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ABSTRACT

Studies of the influence of constituent properties upon the per-
formance of structural composites for aerospace applications are
described. Previous elastic constant and tensile strength evaluations
are extended to broaden their range of applicability. An analysis of
compressive strength is presented. These analyses are then used in
a structural efficiency study of sandwich cylindrical shells subjected
to axial load conditions appropriate to the launch ve hicle problem.
Promising areas for future development of composite materials are

indicated.

iii




FOREWORD

This document is the annual report on the program entitled,
""'Study of the Relationship of Properties of Composite Materials to
Properties of Their Constituents' for the period, September 27, 1963,
to September 26, 1964, The program was performed for the National
Aeronautics and Space Administration under Contract NASw-817 and
was monitored by Mr. N. Mayer of this agency.

The authors wish to acknowledge the contributions of Prof. Z.
Hashin, of the University of Pennsylvania, consultant, and P. Juneau,
to this report. Prof. Hashin performed the analyses of transverse
strength and of elastic moduli for arbitrary phase geometry. Mr. Juneau
conducted the experimental program described in Appendix 5 with the
assistance of R. S. O'Brien. The contributions of T. Coffin, R. K. Cole,

and O, Winter are also acknowledged.




TABLE OF CONTENTS

Abstract

Foreword

Table of Contents

Introduction

Elastic Moduli
Arbitrary Phase Geometry

Strength of Fibrous Composites
Tensile Strength Parallel to Fibers
Compressive Strength Parallel to Fibers
Transverse Strength

Structural Efficiency of Composite Materials
Analysis of the Structural Efficiency of Cylindrical Shells

Determination of Range of Loadings of Interest for Launch
Vehicles

Calculation of Efficiencies of Metal Shells for Reference

Calculation of Elastic Constants for Composites and Use
in Efficiency Evaluations

Efficiencies of Composite Shells

Extensions of Efficiency Analyses to Other Than Shell
Buckling Applications

Concluding Remarks

vii

Page

iii

vii

12
13
28
36
44
46

53

53

55

59

69

71




High Modulus Binder Studies 75

Conclusions 79
References 82
Appendices
1. Statistical Models for Fiber Strength 84
2. Compressive Strength of Fibrous Composites 89
3. Laminate Stress Analysis 96

4. Elastic Stability of Filament Wound Cylindrical Shells Under
Axial Compression 101
5. Experimental Investigations of Binder Systems for Composite 106

Materials

Tables

Figures

viii




INTRODUCTION

To help direct corﬁposite materials developments into areas yielding
greatest performance improvements, knowledge in depth is needed of mechanics
of composites as elements of aerospace structures and of properties attainable
with proper combinations of constituents, Recent results of continuing studies
in both of these areas and their initial application to provide guidelines for
developments are reported herein.

First evaluations of elastic constants and ultimate tensile strengths
of composites were reported in ref. 1. The elastic constant analyses are
enhanced herein by consideration of auxiliary phase geometry, and compari-
sons are made with experimental data. Strength studies are expanded. The
ultimate tensile strength analysis is carried to a point where it is perhaps
ready for general application, and a first cut is made at the problems of
compressive strength and strength transverse to the fibers. Thus, the tools
are developed for an initial survey of the performance potentials of various
materials for composites for aerospace structures.

For this initial survey the shell of the rocket boost vehicle is chosen
as the structure and the efficiencies of awide variety of combinations of
filamentary and binder materials as composites for this application are evaluated.
The evaluation procedure involves some extension of the Stein-Mavyers (ref, 2)
analysis of the buckling of anisotropic shells to provide a basis for the calcu-
lation of shell weights at given values of the appropriate structural index for

this application (as in the efficiency analysis procedure of ref, 3). A major




intermediate output from this study is the compilation of elastic constants for
the wide variety of constituent combinations surveyed, -used as inputs for the
shell efficiency investigation, and tabulated herein for possible use in other
such analyses. The end results of the survey are recommendations for com-
posite types and configurations for most profitable further research and develop-
ment effort.

Inasmuch as one of the more emphatic of the recommendations has to
do with the need for improved binder properties for composites compared to
those now available in plastic resins like epoxy, some effort was expended
in carrying forward the work initiated in ref. 1 toward a three-phase (filled

binder) composite. Results of this work, while not spectacularly successful,

are included as perhaps helpful to future workers in this area.




ELASTIC MODULI

The previoﬁs contract studies of the elastic moduli of transversely
isotropic fibrous composites (Ref. 1 and 4) resulted in expressions and
bounds for these moduli for certain types of geometry. The most important
results were obtained for a special geometry which is described by a fiber-
reinforced material which consists entirely of parallel composite cylinders.
Each composite cylinder consists of a fiber core, which may be hollow, and
of a concentric binder cylindrical shell. The cross section sizes diminish
from finite to infinitesimal sizes and thus the remaining binder volume, not
included in cylinders, may be made arbitrarily small. These results were
also applied, subject to a geometric approximation, to the case of randomly
distributed equal diameter fibers.

By a variational bounding method based on the classical principles of
minimum potential energy and minimum complementary energy, expressions
for four effective elastic moduli were obtained. These moduli are K23 A-the

plane strain bulk modulus referred to the transverse 23 plane (normal to the

0

fibers), G,

; -the shear modulus governing shear in a plane normal to the

transverse plane (parallel to the fibers) E1 -the Young's modulus for uniaxial
stress in fiber direction and 1/1 -the Poisson's ratio for the same case,
The fifth elastic modulus G:;:,J -shear modulus in the transverse plane could

only be bounded from below and above.




The results for these elastic constants, as well as the related
expressions for constant diameter fibers in an hexagonal array, were pro-
grammed for a high spegd digital computer. Typical results obtained from
this program have been presented previously. Unfortunately, the results
presented were not free of errors. First the equation for the transverse
plane strain bulk modulvus, KZ?;:: , contained an error in the Poisson ratio

terms. . Thus, eq. 3.24 of ref, 1 should have been presented as follows:
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The numerical effects of this change appear to be negligibly small for all
cases considered and in fact for 7/: 0.25, the error is exactly zero.
Also a programming error existed in the computer program for the
case of hollow fibers (¢ 7 O ). For this case the results for G7% were
grossly in error and the affected curves (figs. 3 and 4 of ref. 1 ) are
presented here in their correct form as figs. 1 and 2. Fig. 1 shows the
results for transverse Poisson's ratio. It now appears that materials of
extremely high Poisson's ratio can be obtained through the use of hollow
glass fibers. Experimental confirmation is lacking for this phenomenon,
In fact experimental data for all but the longitudinal ’Young's modulus are
extremely scarce. A collection of data for the transverse Young's modulus
was presented in ref, 5 . The equations of the present study were used to

calculate these values from the constituent moduli and volume fractions,



The results are shown in fig. 3 and the agreement is most encouraging. A
similar comparison is made in fig, 4 for the shear modulus in the fiber
plane, G12, Here the agreement is not as good.

The above mentioned results appear to be valuable as approximate
expressions and they have been used herein in extensive parametric structural
efficiency studies., There are, however, certain remaining unanswered questions
associated with the elastic constants of fibrous composites. Principal among
these is the effect of non-uniform fiber spacing. One method of assessing
the possible magnitude of effects associated with this uncertain transverse
geometry is to determine bounds on the elastic constants for arbitrary trans-
verse geometry. This will also provide information for consideration of

non-circular fibers.

An alternate approach is to apply statistical techniques to the problem
of specifying transverse geometry. This may be done in terms of joint
probability functions. To give an example, let it be assumed that the fibers
have full cross sections (no voids). Consider two arbitrary points i(l) and

x(z) in a transverse plane. The distance between the poirits is given by

(22 W)
ros X - x (2)
One may now define four two point probabilities. For example, gll is the
probability that both points are in phase one (say binder) g12 is the probability
that the first point is in phase one (binder) and the second in phase two

(fibers). Analogously one has the joint probabilities g21 and gZZ. Let these




probabilities be denoted shortly by gMmn, The assumption of statistical

homogeneity of the material implies

7 =9 ) (3)

that is to say the actual position of the two points in the material is of no

consequence. The further assumption of statistical transverse isotropy

implies that for r in the transverse plane:

where r is the magnitude of I. Eq. (4) means that the actual direction of T
in the transverse plane is of no consequence. For r notin the transverse
plane, the joint probability functions remain functions of r.

In the same way one may define three point, four point ... and N point
joint probabilities. As more and more joint probabilities are known the
statistical geometry becomes more and more specified. In general the
joint probabilities must be determined by experiment.

It is interesting to note the meaning of one point probabilities. These

are the probabilities that a point thrown at random into the material is either




in one or the other phase. It is easy to realize that the one point probabilities

are just the volume fractions of the phases.

Arbitrary Phase Geometry

The general definition of the effective elastic moduli C>i:jk1 is

AJ'k,Q &KK (5)

where the range of subscripts is 1, 2, 3, a repeated subscript denotes
summation and overbars denote average values over large volume elements.
Eq. (5) is meaningful only for boundary displacements or loadings which
produce uniform states of stress and strain in homogeneous media, (ref. 1l and 4).
In the present case of statistical transverse isotropy there are five independent
effective elastic moduli, for example the one listed above.

In general the effective elastic moduli are functions of the phase

moduli and the phase geometry., For random geometry they are thus func-

tions of all the N point joint ‘probability functions of all orders. It is at present
not known how to establish this functional relationship in general. The present
analysis is concerned with a simpler yet very important question: Given only
phase moduli and phase volume fractions, (i.e. one point averages), to what
extent are the effective elastic moduli defined by such information? Such
information will henceforth be referred to as simplest information. The

present method of investigation is again a variational bounding method which




is, however, based on new variational principlesin the classical theory of
elasticity (Ref. 6). The bounding method is also based on statistical analysis,
The details of the analysis, which is quite lengthy, will be reserved
for the open literature. Here only the final results will be stated. With the
notation employed in Refs. 1 and 4 and for a material consisting of full elastic

fibers and an elastic binder the bounds are:
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R. Hill has obtained bounds for E1 and v l of transversely isotropic
fiber reinforced materials in terms of volume fractions and phase moduli
only by different methods, (private communication, to be published). His
bounds show that from a practical point of view the law of mixtures is in
general a good approximation. Similar conclusions have been reached in

Refs. 1 and 4, Thus good approximations for El and —‘/l are:




It has been shown that the bounds (6), (7) and also Hill's bounds are
best possibkle in terms of phase moduli and phase volume fractions. By this
is meant: If the only information available is the simplest information then
these bounds give the best information one may possibly obtain about the
effective elastic moduli. Obviously, in order to improve the bounds one
has to use additional information such as two point and higher order joint
probabilities. It is as yet not known how to use such information. It is
not yet known whether the bounds (8) are also best possible in terms of the
simplest information, however, the method of derivation suggests that it
is possible that they are.

The nature of the bounds described above is of considerable practical
significance. A designer of a fiber reinforced material certainly knows
the elastic moduli of the constituents from experiments and also has control
over the volume fractions. He has, however, no control over the higher
order statistical details of the geometry. Therefore, the usual method of
manufacture of such materials must invariably lead to scatter in the effective
elastic moduli. The worst possible amount of scatter is defined by the bounds
given above. Unfortunately, the distance between the bounds is quite large.
This is to be expected as the arbitrary phase geometry includes the extremes

of each material being either matrix or inclusion. The arbitrary phase
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geometry bounds are compared to the previous random array bounds for the
transverse shear modulus in Fig, 5, It is seen that, for all but small ratios
of constituent moduli, the arbitrary geometry bounds are extremely far apart.
An interesting and unexpected result is that the lower bound for arbitrary
transverse geometry is higher than the lower bound obtained in refs. 1 and 4
for circular fibers in a random array. This arbitrary geometry lower bound
has therefore been substituted into the existing elastic constants computer
program used in the efficiency studies herein, resulting in a reduction in the

distance between the previous bounds on transverse Young's modulus,
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STRENGTH OF FIBROUS COMPOSITES

The strength of fibrous composites has previously been studied as
part of this program for tensile loads applied in the fiber direction. This
work has been extended, as described in the following section, to illustrate
how constituents of various characterizations can be accommodated by the
analysis. An initial analytical treatment of failure under a compressive
load parallel to the filaments has been undertaken. Also a study of composite
strength under loads transverse to the fiber direction has been made for the
condition of a perfectly plastic matrix material. These studies are described

in the following sections.
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Tensile Strength Parallel to Fibers

Various models have been proposed for the tensile failure of a fibrous
composite loaded in a direction parallel to the set of uniaxial reinforcing
fibers. There continues to be substantial disagreement as to the actual
mechanics of failure within such a composite. The model treated in the
present analysis (see Ref. 1 and 7 ) is shown in Fig. 6 and consists
of a set of parallel fibers which are assumed to be strong and stiff with
respect to the matrix material in which they are imbedded. The fibers
treated are high strength brittle fibers whose strength is dependent upon the
degree of surface imperfection. When such a composite is subjected to a
tensile load a fiber fracture will occur at one of the serious flaws or imper-
fections. When such a fiber breaks the stress in the vicinity of the broken
fiber is perturbed substantially so that the axial stress in the fiber vanishes
at the fiber break and gradually builds back up to its undisturbed stress value
due to shear stresses being transferred across the fiber matrix interface.
The general stress pattern in the fiber is shown in the figure and has been
discussed in the previous work (Ref. 1 and 7 ). When such a break
occurs several possibilities for the future behavior of the composite exist.
First the high interface shear stresses could produce interface failure which
could propagate along the length of the fiber reducing the fiber effectiveness
over a substantial fiber length. In order to achieve the potential of the fiber
strength it is necessary to study and determine the fabrication conditions

which will yield an interface sufficiently strong to withstand this interface
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shear failure. This can be done either through the use of a high strength
bond or of a ductile matrix which permits redistribution of the shear

stresses. In the latter case the length of fiber which is affected by the

break will increase as it will take a longer distance to retransmit the
stresses back into the fiber at the low stress level of a ductile matrix.
With a strong bond, the interface conditions can be overcome as a potential
source of failure, and a second possibility is that the initial crack will
propagate across the composite resulting in failure. This is influenced
by the fracture toughness of the matrix and again since it is clear that with
brittle fibers one can always expect a fracture to occur at a relatively low
stress level, it is important that the fracture toughness of the matrix
material be sufficient to prevent the propagation of this crack across the
composite. If these two potential modes of failure are arrested it will then
be possible to continue to increase the applied tensile load and to obtain
breaks at other points of imperfection along the fibers. Increasing the
load will produce a statistical accumulation of fiber fractures until a
sufficient number of ineffective fiber lengths in the vicinity of one cross -
section interact to provide a weak surface. At the point of incipient fracture
all of the failure modes described may very well interact to produce the
final fracture.

This statistical model of failure has been discussed in some detail
in the previous work (Ref, 7 ). The present study is concerned with an

extension of certain aspects of this problem to clarify the relationship

1




between predicted results and experimental data, and to emphasize the
potential for application of this analysis. A brief review of the method will
be presented first.

The model which is used to evaluate the influence of constituent
properties upon the tensile strength considers that in the vicinity of an
individual break a portion of each fiber may be considered ineffective.

The composite may then be considered to be composed of layers of
dimension equal to the ineffective length. Any fiber which fractures within
this layer will be unable to transmit a load across the layer. The applied
load at that cross section would then be uniformly distributed among the
unbroken fibers in each layer. The effect of stress concentrations which
would introduce a non-uniform redistribution of these loads is not con-
sidered initially, A segment of a fiber within one of these layers may be
considered as a link in the chain which constitutes an individual fiber.
Each layer of the composite is then a bundle of such links and the composite
itself a series of such bundles. Treatment of a fiber as a chain of links

is appropriate to the hypothesis that fracture is due to local imperfections.
The links may be considered to have a statistical strength distribution
which is equivalent to the statistical flaw distribution along the fibers.

The realism of such a model is demonstrated by the length dependence of
fiber strength. That is,longer chainshave a high probability of having a
weaker link than shorter chains,and this is supported by experimental data

for brittle fibers which demonstrate that mean fiber strength is a monotoni-
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cally decreasing function of fiber length. For this model it is first
necessary to define a link dimension by consideration of the perturbed

stress field in the vicinity of a broken fiber. It is then necessary to define

the statistical strength distribution of the individual links which can be

obtained indirectly from the experimental data for the fiber-strength-length
relationship. These results can then be used in the statistical study of a

series of bundles and utilized to define the distribution function for the

strength of the fibrous composite. This has been treated in Ref. 7

The example used in the previous work uses the case of individual fiber strengths

characterized by a distribution of the Weibull type:

Py

3 = Lo enp (-rxe B ay

where 3(0'3 is the distribution function for fibers of length, L, and

and X 4(3 are the two parameters characterizing the function. For such

*
fibers, the statistical mode, C:_ , of the composite tensile strength is
found to be:
-7
" {
o, = v («xSpe) (12)

One of the reasons for the existence of many tensile failure models
is that for gross behavior, there are many similarities in the predictions
which are obtained from widely differing models., Consider first the influence

of fiber volume fraction upon strength. In equation (12)the ineffective length

is a function of fiber volume fraction/ '\/{_ . This function is given in Ref. 7 as:
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where 4) is the fraction of the undisturbed stress value at which the fiber

is considered to be effective. Thus for given constituents:
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and from eq, (12)
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where Crref is a reference stress level which is a function of fiber and
matrix properties.
This equation is plotted in Fig. 7 (for {3’ = 7.7, which is a typical

value for commercial E-glass filaments) where it is compared with the

rule of mixtures value, namely:

o =

. O:e.s; \/F (16)

The tensile strength of the matrix has been neglected since it is usually

of little import in this sense except at low fiber volume fractions. The curve
of eq. (15) doesnot go to unity ata fiber volume fraction of unity because the
maximum packing density of fibers is a hexagonal array for uniform diameter

fibers with vy = 0.904. The proximity of the two curves indicates the
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hazard of inferring from agreement with experimental data that the analysis
which generated one or the other curve is a correct model of the failure
process.

The next problem is the question of selecting a reference fiber strength
with which to make comparisons between composite performance and expected
composite performance. In treating fibers which are characterized statistically,
the hazard of using a mean value should be quite apparent from the previous
observations of the variation in fiber strength. Thus the strength value does
not have a meaning unless there is a length value associated with it, Consider
fibers characterized by eq.(1l) and composed of n links of length § , where

L=nd , which links are characterized by:

-1

(3 . 3
{(c/): «xg(iﬁ" eX,F(—o(/bO’(’) (17)

The kP moment of such a distribution function is defined by:

[EN)

Moo= j 5 () Ao (18)

The mean, & , and standard deviation, S , are defined in terms of
this moment function as follows:
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Substitution of (17)and (18) into {19)and (20) yields:
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Similarly, for fibers of length, L, egs. (11}, (18) and (19)yield the mean strength

of such individual fibers, & , as:

1/,)
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It is now possible to answer the question: what is the relationship
between the composite strength (the statistical mode) and the mean strength

of individual fibers of length, L? The answer is:

* ¢ '/f ( c)'%3
cTt 5
= <T> L2 (24)
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It is of interest to plot this strength ratio as a function of the fiber coefficient

of variation which is obtained from eqs. (19)and (20) as:
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T+5)Y= T (1+4 ]

L ! ( (‘5 s ( ﬁ) N

(%)

Q|

Note that for the Weibull distribution, this ratio is independent of fiber gage
length. Simultaneous solution of eqs. (24) and (25) for selected values of
L/§ is achieved by varying ({ . The results are plotted in Fig. 8 where
composite strength is plotted as a function c")f the fiber coefficient of variation,

that is, the standard deviation divided by the mean value at that same length,
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Thus it is seen that in dealing with composites of length equal to one
ineffective length, that is the basic bundle of fiber links of the model previously
described, the mode of the bundle strength is slightly lower than the mean
strength of individual fibers and departs from this value as the variation
increases. The other curves show that as the length ratio increases, as is
the case for reasonable specimens where the fiber length is large compared
to the ineffective length, one would expect from this analysis that composite
strength would be somewhat larger than the mean strength of fibers of the
same length. And since these numbers are close to one, for coefficients of
variation as large as 15%, it is easy to interpret the composite performance
as having been equal to some fraction of the fiber performance. In general,
the composite strength indicated here would not be achieved because the
damage to the fibers during the fabrication process changes the population
characterization. Curves of this type then have an important use in assessing
how far the composite deviates from its potential strength value because of
additional damage introduced after the time of the measurement of the fiber
strength., To emphasize the point, note that if one tests fibers of a given
length and then tests a composite and compares the two strength values,
these results indicate that, in general, the numbers are expected to be close
together for fibers which do not have extreme variations. However, the fact
that they are close together does not indicate that there is any understanding
of the mode of failure. Thus, one may consider the experimental data to

support the theory that failure is governed by the rule of mixtures or that

20



failure is governed by this statistical fracture theory. Both yield similar
results for this gross effect, yet the different models suggest different
methods of increasing the composite strength. The importance of obtaining
a correct modelfor the mechanics of fracture lies in the potential for
achieving improved composites.

The validity of the present model was investigated by a new experi-
mental technique described in Ref. 7 . This experimental program was
directed toward making possible the observation of the failure mechanism
during the actual loading process of the composite. The experimental
model is shown in Fig. 9 and consisted of a single layer of glass fibers
imbedded in an epoxy matrix and loaded in tension parallel to the fibers.

In the present extension of the study, fibers of a diameter which is large
compared to commercial fibers were used. These were 3 1/2 mil E-glass
fibers furnished through the courtesy of Narmco. The fiber spacing was
relatively close and the thickness of the specimen was only slightly larger
than the diameter of the fiber. The overall specimen gage section dimensions
were a 1/2" width, a 1'" length and a thickness of about four thousandths of

an inch. The fiber volume fraction was in the vicinity of 50%. The specimen
was observed photoelastically during the test process in a fashion such that the
unloaded specimen appears black. The major contributor to the photoelastic
effect is the glass fibers and as they are loaded the fibers will brighten.

Thus, when the fiber is at high load and appears bright a broken fiber will

21




result in a zero stress region which is dark,

The fibers used in these specimens were tested individually at three
different gage lengths and the results are plotted in Fig. 10 in the form of
average strength as a function of gage length. To indicate the effect of the
matrix properties upon the composite, two test series were conducted
utilizing epoxies which were very nearly identical except that one specimen
had a flexibilizer added to it, This resulted in a decrease of the elastic
modulus and an increase in the total strain to failure as shown in Fig. 11.
The matrix materials used are those labeled 1 and 4 in Fig. 1l1. The
test results are presented in Table 1 . The effect of matrix properties
on the character of the results is shown in Fig. 12. Fig, 12a is a typical
picture at 99% of ultimate load of 3 1/2 mil E-glass fibers in an epoxy
having a modulus of .48 million. The fiber ineffective lengths are on the
order of 10 diameters and distribution of fiber breaks is random. Fig. 12b
shows the similar specimen using a matrix material of modulus 0. 28 million psi
again taken at 99% of the maximum load. Here it is seen that (1) the ineffective
lengths are substantially larger,being on the order of 30 diameters and (2)
that the number of breaks are smaller and (3) the effect of stress concen-
trations is larger. Since the ineffective lengths are larger, it takes fewer
of them to produce a weak cross section and hence failure of the composite,
The role of the matrix in confining the detrimental effect of perturbations
of the stress field which result from a fiber break are clearly evident.

Thus it is seen that although a ductile matrix is desirable from the point of
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view of alleviating the stresses and preventing interface failure, and also
for having a higher fracture toughness, a strong and stiff matrix woﬁld have
a greater effect on confining the perturbations to the stress field thus pro-
ducing a beneficial effect for the statistical failure model. Experiments
using constituents which trade off these various factors are sorely lacking,
and the proper evaluation of the relative merits of various failure models
will require more experimental work. It is hoped that the experiments
that have been described here can be extended to aid in this work.

Since the test data of Fig. 10 yielded a straight line and since the
Weibull distribution of eq. (11) would also produce such a straight line, as
is apparent from eq. (23) , the fiber test data can be used directly in the
analytical model to predict composite strengths. This has been done and
the results are presented in Fig. 13 based on the fiber diameter of 3 1/2 mils
for the experimental fibers used. The curve is linear on this logarithmic
plot where the ineffective length ratios one to ten are appropriate to elastic
matrix materials and the range 10 to 100 is the appropriate range for the
inelastic results. The two test points previously described (average values
from Table 1 ) are shown on this plot and it is seen that the two appear to
have the trend of the analytical result but the strength levels are substantially
below those shown., Several reasons exist for this; one important one being
the fact that the fiber strength values of Fig., 10 cannot be extrapolated to
very short fibers since data (e.g. Ref. 8 ) show that the curve flattens out

at very short lengths. Since the ineffective length, for a practical composite,
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is a very short fiber length, one must reconsider what amounts to an
extrapolation of the straight line of Fig. 10 down into the short fiber range.
To do this consider some simple fiber populations; for example, the rectangular
distribution shown in Fig. l4a. Given this simple rectangular distribution
function for the links in a fiber chain the cumulative distribution function is
readily obtained as shown in Fig. 14b. The chain representing a fiber
containing n links would have a distribution function of the general shape
shown in Fig. l4c and its associated cumulative distribution function as
shown in Fig. 14d. However, it appears from data, for glass fibers for
example, that the general characteristics of the distribution function indicates
that the bulk of the fibers fail within a finite band at high stress level and
occasional fibers fail at small stress levels so that an idealized link dis-
tribution function would look more like that shown in Fig. 15a. Here the bulk
of the fibers are shown as in the simple rectangular distribution function
proceeding with a small portion of the population isolated at a lower stress
level., The effect on the cumulative distribution function for the fiber lengths
is trivial. It departs from zero over the lower range as opposed to running
along the axis to the stress 0’3 but the value p can be quite a small value.
However, if one now looks at the effect of this small additional low stress
group on the strength of a chain it is seen that there exists a distribution
function which has two peaks,where the maximum value of the two peaks

are as shown, andalsothe cumulative distribution function rather

drastically modified. The analysis defining these results is presented in
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Appendix L.

For p arbitrarily small there is some large n value which will sufficiently
diminish the right hand peak of Fig. 15 with respect to the left hand peak so
that a long enough chain will soon have its strength dominated by the low
stress level group of the population. Fig. 16 shows the number of elements
n required to make these two peaks equal to one another as a function of, p,
the fraction of the population in the low strength region. The number of
elements required is a function of the ratio of the width of upper rectangular
band, O;_ -G , to the width of the lower rectangular band, &, - &, .
Results are shown for three different values of this ratio. It can be seen
that even for fractions of the population in the low strength region as low as
1% only several hundred elements are required before the lower peak equals
the upper peak. The influence of the distribution of fibers between the two
different regions is shown more clearly in Fig, 17 in which the average
fiber strength is plotted as a function of the fiber length where the distribution
function for the individual elements is as shown in the lower left portion. Here
the upper band is twice the width of the lower band and only 1% of the link
elements are considered to be in the lower band. The result for the mean
strength curve very closely simulates the experimentally observed bilinear
distribution of strength versus length. It is considered significant that
distributions of this form can reproduce the experimental data.

Evidently the prospects are encouraging for using such a distribution

directly in the failure model that has previously been described.
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The original example for the computation of composite strength was
based on the use of a single straight line, such as the latter portion of this
curve of Fig., 17. It is clear that this can lead to an overestimate of the
composite strength. Having demonstrated the ease with which the experi-
mental fiber strength data can be simulated, it now remains to select an
appropriate compound distribution function and use it in the previously derived
statistical analysis. For example a Weibull distribution can be utilized in

the following form:

f(«B = fx‘é(?,r@ ’ekf(- os.go’ﬁ'>-+

Gt

¢r-p) oﬁaéﬁzr exg (‘_Nzgo,ﬁ> (26)
and the associated cumulative distribution function:
_ G,\ ANy 4 6z
Fl(o)z= I- Ft’(f’(—lx‘éo" , "("f)f"f(‘“a‘ c') (27)

It is seen that for p equals either zero or one, the result reduces to
a simple Weibull distribution and for any p value this compound distribution
can be used in the preceding equations in exactly the same fashion as the

simple one was with only the sacrifice of algebraic simplicity,
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Conclusions Regarding Tensile Failure

The tensile model indicates that randomly distributed fiber fractures
occur well below the ultimate composite strength. The statistical strength
characterization of the fibers determines the frequency of these fiber breaks.
The strength of the composite is determined by this and by the efficiency with
which the matrix limits the effect of the perturbation of the local stress field
produced by a fiber break. The need for statistical characterization of fibers
and for consideration of matrix deformations is strongly indicated. A new
experimental technique for the evaluation of the tensile failure process has
been presented and the results support the analytical model.

The analysis does not include all possible detrimental effects and
hence it is perhaps best to view the results as indications of the potential
for advanced structural composites. These potentials are the major con-
clusions of the present study. Simply stated, the conclusion is that high
strength fibers used in an appropriate matrix can yield composites having
tensile strengths usually attained only in very short lengths of very small

diameter filaments.
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Compressive Strength Parallel to Fibers

The problem considered is the compressive strength of a fibrous
composite formed by the set of parallel fibers imbedded in an otherwise
homogeneous matrix, The composite is considered to be subjected to com-
pressive load parallel to the fiber direction. It has been suggested by Dow
(Ref, 9) that the mode of failure for such a composite is the small wavelength
buckling of the fibers in a fashion analogous to the buckling of a column on an
elastic foundation., One of the motivations for such a composite failure
model is indicated in fig, 18, Photoelastic stress patterns are shown for
three individual glass fibers imbedded in an epoxy matrix which has been
curedatatemperature of about 250°F, As is well known, the shrinkage of
the epoxy from its cure temperature down to room temperature results in
the frequently observed elastic instability of the glass fiber. E-glass fibers
of five, three and one half, and one half mil diameter in three
separate blocks of epoxy are shown, It is clear from the repeated stress
pattern that a buckling failure has occured. All three blocks consist of the
same epoxy subjected to the same cure conditions. The only apparent differ-
ence between specimens is the difference inamplitude andwavelength of buckling.
The shrinkage of the epoxy resin provides a convenient means for applying a
compressive strain to this glass fiber and observing the resultant instability.
The analytical model of a column on an elastic foundation indicates that the
buckling wavelength of a circular column would be directly proportional to

the fiber diameter (see ref.10). The three fibers shown here are all in
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identical epoxy matrices and hence the foundation modulus, although unknown,
can be considered to be the same in all cases, Thus, it would be expected that
the buckling wavelength would be linearly dependent upon the fiber diameter.
Fig. 19 shows the measured experimental results. Here the buckle wavelength
is plotted against the fiber diameter on logarithmic paper so that a linear
relationship between the two appears as a 45° line on this graph, The three
test points shown in fig. 18 are plotted along with a best fit 45° line. The
agreement between this analytical curve and the test data indicates at least
qualitatively that there is some justification for considering the elastic
instability mode as the failure mode for the glass fibers.

The problem of quantitatively evaluating this instability failure for multiple
fibers imbedded in the homogeneous matrix is not as straight forward. The ana-
lytical model considered in the present analysis is shown in fig. 20. A series
of parallel fibers are treated as a two dimensional problem, so that the model
consists of plates of thickness h separated by a matrix of dimension 2c, Each
fiber is subjected to a compressive load, P, the fiber length is given by the
dimension, L. Now, two possibilities are considered for the failure mode
here. First, the fibers may buckle in opposite directions in adjacent fibers
as shown on the left portion of fig. 20 and the so=-called extension mode occurs.
This mode receives its name from the fact that the major deformation of the
matrix material is an extension in the direction perpendicular to the fibers.
The model considers that the fibers are stiff relative to the matrix and that

shear deformations in the fiber can be neglected relative to those in the matrix.
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The second possibility is shown on the right portion of the figure where
adjacent fibers buckle in the same wavelength and in phase with one another,
so that the deformation of the matrix material between adjacent fibers is primarily
a shear deformation. Hence, the shear mode label for this potential mode.
The energy method for evaluation of the buckling stress for these modes has
been utilized, where the procedure is to consider the composite stressed to
the buckling load and then to compare the strain energy in this compressed
but straight deformation pattern to a deformation pattern following an assumed
buckling shape under the same load. Thus, a change in the strain energy of the
composite consisting of the strain energy change in the fiber, 4 \{‘: , and the
strain energy change in the binder, & L, » can be compared to the change in
the potential energy associated with the shortening of the distance between
the applied loads at the end of the fibers, AT . The condition for instability
is given by equating the strain energy change to the work done by the external
loads during buckling, Details of the analysis are presented in Appendix
2.

The results for the compressive strength, OZ , for the extension mode

is given by:

< '/L
\/‘(_ l’b é’/ £

< } so-vﬁ()

The result for the shear mode is given by:
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S (29)

These results are plotted in fig. 21 for E-glass fibers imbedded in an epoxy
matrix, The compressive strength of the composite is plotted as a function
of the fiber volume fraction. The two curves represent the two failure modes
considered. It is seen that for the low fiber volume fractions the extension
mode is the lower stress, while for high volume fractions of fibers the
shear mode predominates. The compressive strength of reasonable glass
reinforced plastic containing fiber volume fractions on the order of 0.6 to
0.7 is seen to be on the order of 450 to 600 ksi, Values of this magnitude do
not appear to have been measured for any realistic specimens. However, the
achievement of a strength of half a million psi in a composite of this type
would require an average shortening of greater than 5%. For the epoxy
materials used,such a shortening would result in a decrease in the effective
shear stiffness of the binder material because the proportional limit of the
matrix would be exceeded. It does appear necessary to modify the analysis
to consider inelastic deformation of the matrix material., A first simple
approximation to this has been provided by replacing the binder modulus in
the formulas previously shown by a modulus which varies linearly for the
epoxy from its elastic value at 1% strain to a zero value at 5% strain. The
result of this assumption is the curve labeled inelastic in fig. 21. Here' it

is seen that for very high fiber volume fractions the strength is bounded and,
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although higher than any results obtained to date, they are not unreasonably
high., The results of this study are presented in a somewhat different form
in fig, 22 where the average compressive strain at failure is plotted as a
function of the fiber volume fraction for composites having two different
ratios of fiber Young's modulus to binder shear modulus. Curves for the
two failure modes, that is extension and shear, are presented. The strength
of the composite is obtained simply from these curves by multiplying the
shortening by the product of fiber volume fraction and fiber Young's modulus,
These curves again indicate that the shear instability mode is predominant
over the major range of interest for these ratios of fiber to binder moduli,
Also indicated is the fact that a substantial difference in the result

is achieved for a change in the ratio of fiber to binder moduli

Thus, the factor of 2 utilized in the example here results in almost a factor
of 2 on the results for the shear mode., Thus, changes in the effective value
of the shear stiffness of the binder when stressed beyond the elastic limit of
the material can have a substantial effect on the predicted value of the com-
posite,

The results presented so far are based on strain energy computations
which have involved some assumptions regarding the displacements, and hence,
it is no longer valid to treat the stress obtained as an upper bound of the
buckling stress. In order to investigate the nature of the approximation made
in the strain energy a more precise model must be considered. This is done
by treating the boundary value problem defined by considering an elastic
domain subjected to sinusoidal normal displacements on the boundary. The

strain energy in the binder material is evaluated by considering this strip as
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a two dimensional elastic domain., The equilibrium equation expressed in
terms of displacements can be used to obtain a solution to this problem by
following an approach used by Timoshenko (ref. 10 ) for the related traction
boundary value problem. That is the displacements ux and u/ can

be assumed to be arbitrary functions of y multiplied by trigonometic functions
of the longitudinal direction x., Substitution of these displacements into the
equilibrium equations can be shown to yield an ordinary differential equation
for the function of y. The constants in this solution are evaluated by con-
sidering the boundary conditions on the displacements., From this the strain
energy can be found and this strain energy can be used in the expression shown
previously to obtain a true bound on the compressive critical buckling stress.
This can be done again under the assumption that the fiber is sufficiently
rigid so that shear deformations of the fiber can be neglected. It is also
possible to relax even this constraint and consider two adjacent elastic
domains; one representing the binder and one representing the fiber and to
have boundary conditions in the form of continuity of displacements and
normal tractions across the surface rather than in the form of prescribed
sinusoidal deformations. This approach requires further study.

Another assessment of the results of the present analysis with
experiment can be obtained by utilizing existing results (ref. 11) for hollow
glass fiber composites. These results are shown in fig, 23. Here a set of
short compression columns fabricated from hollow glass fibers imbedded in

an epoxy matrix and tested in compression are plotted in the form of the
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ratio of the strength to density ratiofor a hollow glass fiber composite
normalized with respect to a composite containing solid E-glass fibers
with the same binder volume fraction. Each experimental point here

is for a composite containing a 30% binder on a volume basis and each
point represents the average of at least 5 tests of nominally identical
specimens, The fiber radius ratio, that is the ratio of the inner to the
outer radii of the hollow glass fibers, is the independent variable. The
analysis indicates that the stress to density curve would increase mono-
tonically with the fiber radius ratio over the range of = < 0.9 .

It is seen that the experimental data appear to have the analytical

result as an upper bound,
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Conclusions Regarding Compressive Strengths

It appears that the compressive strength of a fibrous composite
loaded in a direction parallel to the fibers is governed by an instability
mode analogous to the buckling of a column on an elastic foundation, An
analysis to assess the quantitative effect of the influence of constituent
properties upon this buckling stress has been presented,

The compression model indicates that the ne trix shear stiffness
is the material property which has the most significant effect on com-
posite compressive strength. The choice of the failure mode is supported
qualitatively by experimental results for the compressive strength of
hollow glass fiber composites,.

It appears that the use of matrix materials having shear moduli
which are moderate rathe r than small with respect to the fiber Young's
modulus can yield composites, of high modulus fibers,which have extremely
high compressive strength, Of course the binder must have these values
at the high strains associated with the very high composite compressive

strengths,
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Transverse Strength

The problem of the strength of fiber reinforced materials and composite
media in general is one of the most important aspects of the study of mechanical
behavior of such media. Ideally speaking the aim is to predict mechanical
behavior and strength of the composite on the basis of the known mechanical
behavior and the geometry of the constituents. The present investigation is
concerned with limited treatment of this problem by use of the theorems of
limit analysis of the theory of plasticity, for cases where the load is applied
in a direction such that there is no contihuous load path through the inclusions.

Theorems of Limit Analysis

The theorems of limit analysis are concerned with the evaluation of
the limiting or ultimate load which can be carried by plastic bodies. The
limiting load is defined as that load at which the deformation of the body
can increase without increase in load. This load may be defined as the
failure load of the body.

One way to find the limiting load is to find the stresses and deformations
in the body during a loading program which carries it from an elastic state
into an elasto-plastic state and finally into a fully ideally plastic state, when
deformation continues without load increase and the limiting load is thus
attained. However, such an analysis is extremely difficult to perform and
it is the great advantage of the theorems of limit analysis that the limiting

load can be estimated by bounding from above and below without reference
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to the loading program by which the limiting load is attained. The limit

analysis theorems have been discussed and proved in several plasticity texts.

For the theorems in the plane strain case, which is of importance for the
following treatment of fiber reinforced materials, see Ref.12. For very
general treatment in the three dimensional case see Ref. 13.

Fiber Reinforced Materials

Consider a fiber reinforced cylindrical specimen consisting of an
ideally plastic binder and elastic-brittle fibers which are parallel to the
specimen generators. The assumption of elastic-brittle fibers is certainly
valid for the commonly used glass fibers.

It is assumed that the specimen is in plane strain. Under these con-
ditions the commonly used Tresca and Mises yield conditions are the same
(Ref.12). The specimen is referred to a cartesian system of axes where
the Xy axis is- in fiber direction and x3x3 are in the transverse plane normal
to the fibers.

The yield condition for the binder material then assumes the form

6 - & 2 " 2: 0—2
(S22 33)7 + 49, y (30)

where O—Y is the yield stress of the matrix in simple tension. For conven-
ience let the cross section of the fiber reinforced specimen be chosen
rectangular and let a simple tension 0-22: o ° be applied to two opposite

L is defined as that value of © for

faces (fig. 24a). The limiting load o
which the deformation of the specimen increases without increase in load.

This load may be defined as the strength of the specimen for the loading
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described. The theorems of limit analysis provide a method for bounding
oL from below and above. To find a lower bound on oL one has first to

construct what is known as a statically admissible stress system (Ref, 1,4).

It is easily realized that the stress system

0pp = 6° (o® =) (31a)

in binder and fibers is statically admissible since it satisfies the boundary
conditions, equilibrium equations, traction continuity at fiber-binder inter-

faces and nowhere violates the yield condition (eq. 30). Accordingly, any

o_o = 0y is a lower bound on = and the best lower bound associated with

(eq. 31) is O‘Y itself. Consequently

L
o
&, =0 (32)

Thus the yield stress of the binder is a lower bound for the strength of the
specimen under the loading described.
It follows in a completely analogous way that when the specimen surface

is subjected to pure shear ;:O in the x,x3 plane, the strength in shear fL

is bounded from below by O/y/Z’ thus

ol
Yy < -
> <

T (33)
Finally if the specimen is subjected on its boundaries to biaxial stress

c = o °
22 2
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T337 3 (34)

g~ =0
23

the limiting load is bounded from below according to the condition

< 5. ° O
Sy sloy, - o, (35)

the lower bounds are geometry independent,
For upper bound construction it is necessary to construct what is known

as a kinematically admissible velocity field. Consider again the specimen

shown in fig, 24a under the same loading. However, in the subsequent treat-
ment a geometrical restriction has to be introduced. It has to be assumed
that it is possible to put a plane (normal to the x,x3 plane) through the speci-
men which does not cut through any fiber. Let the inclination of this plane
to the x %, plane be denoted by o¢ (fig. 24a).

The kinematically admissible velocity field chosen is defined by a
constant velocity v of the part aefd relative to the part efcb, in the direction
of the cut ef. Thus the velocity field is a sliding rigid body motion of one
part relative to the other. There is a tangential velocity discontinuity, only,
of the velocity at ef which is permitted in a kinematically admissible field.

In cartesian components the velocity field is given as follows:

v_=20
2

in efcb (36)
vy =0
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vV, = -V cos b

in aefd (37)
-V SIin K

v

3
Since the velocities are constant they satisfy the incompressibility
condition. Also rigid body motions are permitted for a kinemmatically
admissible fields at those parts of the boundary where tractions are
prescribed, (ref.13). Consequently the velocity field (eq. 36, 37) is
kinematically admissible.

Proceeding now according to ref. 12, Chapter 7, the kinematically

admissible multiplier m; is defined by

o Tdh o+ (5 evds
m, = ZY A(T T‘jf r (38)
v _ + s
SC 2 2 33

Here A is the area abcd, T is the plastic dissipation function which

depends only upon the strain rates derived from the kinematically

admissible field, A v is the tangential discontinuity in the velocity

across ef, ds is an element of length, C the boundary abcd and

T2 and T3 are components of traction on the boundary. The meaning

o L
of my is explained by the statement that mkG’ is an upper bound on o .

Because of the nature of eq. 36 & 37 the strain rates vanish and thus
vanishes. Introducing eq. 36 & 37 into eq. 38 and using the present

particular boundary loading, one finds

5
mk = 7 1
o sin 2 ex

<

and accordingly
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(40)

The maximum of sin 2 is unity, for e = 45°. In that case, combining

eq. 20 with eq. 32 it follows that
o = 9 (41)

Thus, in the event that it is possible to put a 45° plane through
the specimen without cutting any fibers, the strength of the fiber
reinforced specimen is just the strength of the binder, independently
of the shape or stiffness of the fibers.

The same situation is valid for biaxial applied stress of the type
of eq. 34. In the event of applied uniform shear stress, the limiting
shear stress Z-L is D'Y/Z if it is possible to put a plane through the
specimen, without cutting fibers, which is perpendicular to the direction
of one of the shear stresses.

The preceding results are chiefly important for regular arrays
of fibers of equal cross section. Consider for instance a square array
of fibers of equal circular sections. The most unfavorable situation
for uniaxial stress is at 450 to the array side (fig. 24c), for in this case
it is always possible to put a 45° plane through the binder alone. How-=-
ever, if the array is oriented as in Figure 3d, the possibility of putting
a 45° plane through the binder alone depends on the fractional volume of
fibers. It is easily found that this is possible only for a fractional

T
volume smaller than g = 0.392.
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Particle Reinforced Materials

The preceding analysis is easily carried out for the three-
dimensional case of a plastic binder which is reinforced by elastic-brittle
particles. In this case the theorems of limit analysis have to be used in
their three dimensional form (compare ref.13). However, in three
dimensions the Tresca and Mises yield conditions are not the same, and
accordingly the results are somewhat modified.

For lower bound construction the results (eq. 32, 33 and 35) are
recovered identically for both yield conditions. Again the results are
independent of the geometry.

For upper bound construction, the Tre§ca yield condition leads
again to coincidence of upper and lower bounds with a geometrical
restriction similar to the one used before. Thus for uniaxial stress
eq. 40 is found again if it is possible to put a plane through the binder
which makes an angle f7‘< with the direction of the stress. For |

. =45%, eq.4l is found again and analogously for biaxial stress the

limiting load is defined by

where i and j are any perpendicular directions.

For applied shear again

oo
v = (43)

if it is possible to put a plane entirely through the binder which is normal

to one of the shear stresses.
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For the Mises yield condition the bounds do not coincide.

. o s
for simple tension with the 45 plane condition

i 27
L o
TR e A R
c) v 3 /
Analogously for biaxial stress
/0 4-3
gy = e —et 2 8o

7

and for pure shear

b
Lo T <
2 Jz

Conclusion

Thus

(44)

(45)

It has been shown that under certain geometrical conditions, the

strength of an ideally plastic binder is not increased (or increased at most

by 15%) by reinforcement with elastic-brittle fibers or particles, However,

the geometrical restriction that a plane can be passed through the binder

without cutting the reinforcement is severe, and in the more common case,

where this condition is not fulfilled, the effect upon strength is uncertain.
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STRUCTURAL EFFICIENCY OF COMPOSITE MATERIALS -
FIRST ASSESSMENT

If composites can provide weight savings for structures subjected to
compressive loadings as well as for the tensile loadings of pressure vessels
to which they have thus far been primarily applied, they will be much more
valuable as aerospace materials. Many structural elements in aerospace
vehicles are designed by compressive loadings, and as will be seen, even-
tually complete evaluations are desirable for the variety of elements -
columns, plates, and shells - of which aerospace vehicles are comprised,
to determine the suitability of composites for use throughout the structure,
For a first assessment the main structural shell of launch vehicles has been
chosen as representative of a major class of applications for which improved
materials may lead to significant structural advances. This section of
this report is concerned with this assessment,

In order to accomplish an adequate structural-efficiency evaluation
a number of factors must be properly combined. Heretofore some of these
factors, e.g. the elastic constants of composites, have not been defined
with sufficient precision to permit a reasonable quantitative determination
of the merit of composite materials for shell-buckling applications. Thus
the assessment that follows is a first assessment; in consequence, the
procedures used are developed in some detail so that their validity can be
estimated, and so that subsequent further evaluations may derive therefrom
with confidence. The sequence of exposition is:

1. Derivation of structural-efficiency-evalution shell analysis
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2. Determination of the range of loadings and geometries of interest
for launch vehicles

3. Calculation of structural efficiencies of representative metal shells
to use as a basis for comparison

4. Compilation of elastic constants of composites of a variety of
filaments and binders

5. Calculation of structural efficiencies of composite shells, and

comparisons among materials relative to the metallic constructions.

These steps are presented in the following sections.
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Analysis of the Structural Efficiency of Cylindrical Shells

In order to evaluate the structural efficiency of various materials for
use in the cylindrical-shell-in-axial-compression application which is the
launch vehicle, the loading-index approach, developed in this country by
Shanley (Ref. 3) and others, is used. In this approach a non-dimensional
measure of the structural weight is plotted against a non-dimensional
measure of the design load in such fashion that the structure having the
least value of the ordinate at any value of the abscissa is the one of minimum
weight for that design load. Use of this approach requires first the derivation
of the non-dimensional parameters to be plotted, and second the development
of procedures for determining their relationships for the structures to be
examined. This derivation and development is given in the following section.

Derivation of Structural-Efficiency Parameters for Cylindrical Shells in
Axial Compression

The structural-index plot used for the efficiency evaluations herein
will first be derived for the simple case of isotropic, monocoque shells.
Its extension to orthotropic and sandwich shells follows directly, as will be
shown.

(a) The shell weight per unit surface area is

W:: ‘07" (46)

where
w weight per unit area of shell
{0 shell density
Ve shell thickness
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(b) In simplest form the formula for the compressive buckling stress
of a thin-walled shell is
o = K Y-S /_./' ) (47)
cr = N ap-ve (R
where
critical stress
a constant

Young's modulus

T M X ®

Poisson's ratio
~ radius of shell

(c) The stress is also related to the design loading by

A

> (48)

7.

where

Aé\’ design compressive loading intensity (compressive

load per unit length circumference of the shell)
(d) If the structure is made only just thick enough to achieve the design

load at the buckling stress (with normal factors of safety applied)

g = Oy (49)
and so combining equations (47) and (48)

Me o, £ /2
* g (7

(50)
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(e) Solving for 7

N, R

") KE o1

v3(7-v9

(f) Substituting(51) in (46) and dividing by R:
w__ P Nx

R ~ [AE R e
/3(1-v?)

Or, for a given material

Lidn
R

Ny

SR

(53)

where
C incorporates the material properties and
the /’( from the shell-buckling formula
Equation (53)relates the non-dimensional shell weight to the design

w Nx

conditions of load and size, and a plot of F vs. —;e— is the desired,
non-dimensional efficiency representation. As will be seen, the same

parameters will apply in the case of the more complicated composite sand-

wich shells., The equations for these cases will now be described,

Development of Structural-Efficiency Equations for Composite-Sandwich
Shells

For anisotropic shells such as composite laminates, it is shown in

Appendix 3 that the expression equivalent to equation 47 is
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7 ) VEEr /R T g &
26,5
(54)
where now
EL longitudinal Young's modulus
fr transverse Young's modulus
Yo, Vi Poisson's ratios
6}_7 shear modulus in plane of filaments
Thus the efficiency equation for the anisotropic shell is
o Ny (55)
W _
= /.- A v,
R RE Er  (VEE *irfy 21 vrvi)Gir )[4
j//“‘irﬁz/ VE Ey - £+ Lfr
L=7 LrTL 26
LY
instead of equation (52),
Because the bending stiffness of a sandwich plate is given by
£ 3 3
Diana = —5——/ > (2725) - % (56)

where

Dgand plate bending stuffness of sandwich
E-S Young's modulus of faces of sandwich
v Poisson's ratio for faces of sandwich
72. core thickness
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73 face thickness
if the core is of negligible stiffness, the general efficiency equation for a

composite sandwich shell with a flexible core may be derived from (55) as:
W _ Psfpcé%?) v R
% // é;g ) / J KELr (VB *irk +z// )6 ) T

_ L £
324/ /"‘ - =Lr
lL T ZGLT -

(If the sandwich faces are isotropic, equation (57) reduces to

N
7c x
s * & ,2) R

# ) /_ (57a)
/ /o(/ ff/

For minimum weight the core thickness to face thickness ratio must

be optimized. Optimum values of —7&_ are readily found by differentiation

s

f (57) to be obtainable from the expression

Lian
R

(\

o Zé%/f/

O« : 2 ‘ (58)
2% 2t/ 3
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Equations (52), (55), or (57)apply when the stresses are low enough
to not exceed the elastic limit of the material. For simplicity in this study
all materials are assumed to behave elastically below their ''yield stress, ”05/)
and incapable of achieving stresses above their 'yield" values. (''Yield
stresses'' for the reference metals were arbitrarily selected; methods for
computing the ''yield stresses'' for the composites are discussed in another
section.) With this yield criterion, the efficiency above the elastic limit

is described by the two equations

0}/2
KEE  [VEE tbe 20 )6r
/g " éfz W) VEE b r GEr o9
267
(or for isotropic faces)
r.’
(59a)

//7‘ " (//g,{/j//-wx

and
7L
+ den
_/Z)lzz Cs (OCéfs./(Nr) (60)
oy R
where
(%
2% (2%
Optinuim
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For the present evaluations, arbitrarily the values of K and K were
selected to be equal to unity. Thus the efficiencies for all materials are
uniformly higher than might be expected to be realized in practise, but the

relative efficiencies are probably in the proper proportions.
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Determination of Range of Loadings of Interest for Launch Vehicles

Values of thrust and diameter for the United States launch vehicles
(from Ref.l4) are given in Table 2. Also given are the available values
of the loading index_lvl(from Ref.15), The values of.A/L given here are

R R

somewhat higher than are obtained as in  Ref, 14, simply by dividing
the thrust by 27}'/?3 . The larger values take into account such factors as
increased loads resulting from bending due to wind shears.

Although data in Table 2 are far from comprehensive, they do indicate
the approximate range encompassed by present launch vehicles. For the

N

purposes of this report this range will be considered to be from 10 to 10007”—-2—
(approximately 1 to 100 psi).
Calculation of Efficiencies of Metal Shells for Reference

In order to have a basis for comparison, the structural efficiencies
of a family of idealized monocoque metal shells were calculated using the
procedures previously developed (Eq. 52). In addition to the ideali-
zation of the material stress-strain curves into two straight lines as
described before, the mechanical properties assigned to the metals are
somewhat advanced from current technology (properties used are given

w

in Table 3). The curves OfZ’- VS.AR/‘!- resulting from these calculations
are presented in fig. 25,
The range of loadings of interest for boost vehicles is indicated

on fig. 25 by the grid lines on the graph. In this range the monocoque

metal shells in general buckle elastically, as indicated by the slope of
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1/2 of the curves on the log-log plot (i.e. in this region 3 n, 7 ).
Partial exceptions are: (1) the magnesium-lithium alloy, which reaches
its yield stress at loadings just slightly in excess of those representative
of the Scout vehicle, and (2) beryllium, which becomes plastic just at the
edge of the arbitrarily selected '"range of interest'',

The efficiency of monocoque shells which buckle elastically can be
increased by an appropriate form of stiffening. To extend the reference
efficiencies of metal shells into this stiffened-shell regime, the metals
were hypothesized into ideal sandwich shells, having non-load bearing
cores of 277, 27.7, and 2.77% (0.01, 0.001, and 0.0001 pci). The
cores were assumed to stabilize the sandwich faces so that they would
not wrinkle below the yield stress, and the shear stiffnesses of the cores
were assumed adequate to approximate infinite shear-stiffness behavior.
While such ideal stabilization would hardly be attainable with actual con-
struction, especially for the lower core densities, it does provide a use-
ful lower limit to the weights of metal sandwich shells against which to
measure other materials, These lower limit weights (calculated via
eqs. (57a) and (59a) and employing optimum core proportions as given by
fig. 26) are compared to the monocoque shell weights in fig. 27.

Figure27shows that in the range of loadings of interest for boost
vehicles there are only relatively small differences in weight among the
common metals if effective stiffening, comparable to the intermediate

density sandwich core, is employed. Beryllium permits appreciable
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weight savings at the lower loadings; titanium is slightly superior at the

higher loadings. Accordingly, these two metals are selected as the

standards against which the composite efficiencies will be measured, For

clarity the curves for beryllium and titanium are, therefore, separated

out from fig. 27 and replotted as fig. 28.

Several measures useful not only for the evaluation of composites

but also to help guide the advancement of boost-vehicle shell technology

in general are evident in fig. 28,

1.

Weight can be saved as effectively by improvements in stiffen-
ing (e.g. better core materials) as by improvements in face
materials,

Even for the low loadings typical of boost vehicles, effective
stiffening permits the achievement of efficiencies approaching
the ultimate represented by the yield stress/density ratio of
the material ( ﬁ My

),R

Relative to such boosters as the Scout for which
WN -5 hg pst M
_ /
o V623 (079 7 ) @ ) 459 ﬂﬁ'é?/os/
substantially reduced weights may potentially be accessible,

W<2 0/‘& tit andwich or W ifz
[ / /ma itanium sandwich o A’Mjmj
/, 0/5..%")in a monocoque beryllium construction ]

/

Calculation of Elastic Constants for Composites and Use in Efficiency

Evaluations

With the curves of fig. 28 for metals established, a yardstick is
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available for the measurement of possible combinations of materials for
filaments and binders in composites. Accordingly, a comprehensive
survey of available or potential combinations was undertaken. Both realistic
and idealistic material properties were considered to provide a study of
the effects of systematic variations, such as:
1. A variation in Young's modulus of the binder material for

constant density,
and 2. A variation in Young's modulus of the binder for constant

modulus/density ratio.
or 3. A variation in density of the binder for constant Young's

modulus.
In all, eight filamentary materials andeight binder materials were con-
sidered in all combinations., The mechanical properties of these materials
are given in Table 4, The binder materials are listed in quotation marks
because they are hypothetical materials to a degree,because their prop-
erties have been adjusted somewhat from the normal values to provide
the proper constant ratios to the other binder materials., The material
properties summarized in Table 4 are also repeated in Tables 5-12
as the values for /4 = 0 or l,~i.e. the properties of composites at zero
or one hundred percent binder.

In Tables5-12 are presented the elastic constants calculated from

the equations developed in Reference 1 and herein. These values are

presented in comprehensive detail because they are the first such
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available, and as such may be of use for other studies as well as this{irst
evaluation for shell buckling for which they were primarily generated.

No attempt is made to draw general conclusions from the elastic-
constant values calculated, These values are only an intermediate step
in the evaluation, and it is through their employement in further analysis
like that for shell buckling that their implications become evident.

In the following section the results of the employment of these
elastic-constant values in shell buckling efficiency evaluations are pre-
sented. Eqgs. (57) and (59) were used together with values of ¢, calculated

/

as follows.

The compressive strength of a fibrous composite was calculated
on the basis of elastic instability of the fibers. The transverse Young's
modulus, EZ, was treated as the foundation modulus and strengths for all
materials were related to those experimentally obtained for glass reinforced

plastics, Thus, the 'yield strength', O, , for uniaxial composites is given

by:
72
(Ti'rct } v ([(Fz YQ}

Ve .

where the following reference values were used:

07«L = 150, 000 psi
= 0.7
\/f— vef
Eiover 10.5 x 10° psi
E .o " 2.32 x 10° psi
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For laminates having stiffening in more than one direction compressive

failure was assumed to occur at the same strain as for the uniaxial laminate,

Thus;
S £
e £

The efficiency procedure is similar to that used for the reference
efficiency evaluations for the metal shells (figs. 27 and 28), and comparisons
to the metal shells are used to assess the merits of the various composite

combinations,
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Efficiencies of Composite Shells

The end objective of this study is the derivation of quantatative
guidelines for the further development of most promising composite
materials for aerospace structural applications., The scope of the prob-
lem is indicated to a degree by the numbers of constants to be evaluated
(Table 5 - 12) and the complexity of the interrelations among the elastic
constants and the efficiency of the structure to which they apply (as sug-
gested by equations like 57. In this section the results of the employ-
ment of the newly available values of elastic constants in an arbitrarily
selected first structural application analysis, namely that of cylindrical
shells in axial compression for boost vehicles, are contemplated. As
will be seen, a number of guidelines for future directions of research
emphasis are generated in this first evaluation; not the least of these
are toward other types of structural applications which need to be evalu-
ated in similar fashion to this study of shells., Accordingly, the results
will be presented and assessed first directly for their implications for
the boost-vehicle case, and second for their possible extension to other
structures. The sequence of presentation is: first, a survey of the pos-
sibilities associated with the use of a variety of filaments in an epoxy
binder; second, a study of the effects of changes in binder material;
third, a review of some of the complications associated with composites
of the various types considered; and finally, consideration of extensions

to other applications than boost vehicle shells,
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Various filaments in epoxy binder

(a) Steel. The problems inherent in the use of filamentary materials for
shell structures are brought out by the use of steel filaments in epoxy
binder. Typical results for this combination are presented in Figure 29,
(In Figure 29{as in subsequent figures) the results for titanium and
beryllium shells for the loadings of interest are repeated from Figure 28
for comparison, They are identified by the grid lines between the upper-
long-dash-curves for titanium and lower short-dash curves for beryllium.)
The following results appear in Figure 29,
(1) The uniaxial nature of the steel filaments causes them to be
much less efficient for shell buckling applications than the
reference sheet metal shells, except at the highest loadings

and for the extremely low density sandwich core.

—
Q]
~—

Some of the lack of bi-axiality associated with filaments

is made up by the use of a pa 30°, 90° laminate to provide
essentially isotropic properties in the plane of the composite.
Associated with the isotropic configuration, however, is a
loss in axial stiffness compared to the 0° configuration.

This loss of axial stiffness leads to yielding at lower com-
pressive loads, making the isotropic case less efficient

than the 0° orientation at the higher loading intensities

(i.e. for non-elastic buckling).
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(3)

(4)

(b} E-Glass.

The t 30° comfiguration is less efficient than the isotropic
configuration for all loading intensities. (This result was
found to apply to all combinations of materials, not just to
steel in epoxy.)

There is no indication of a direction for development point-
ing toward a steel-in-epoxy composite having efficient
characteristics for boost-vehicle shells.

Effects of the use of hollow filaments and the general po-

tential of E~Glass in epoxy is brought out in Figure 30, as follows:

(1)

(2)

Hollow filaments (inside radius equal to 0.8 of the outside
radius) are effective in increasing the efficiency of mono-
coque but not sandwich shells when epoxy resin is used as
a binder.

E-Glass reinforced epoxy is potentially competitive with
metal for boost-vehicle sandwich shells only if substan-
tially advanced sandwich core materials become available,

and then only at the higher loading intensities.

(c) Hi-Modulus Glass and Asbestos. High modulus glass and asbestos

filaments are perhaps more nearly '"available' than the more advanced

filaments like boron or alumina, The suitability of their application for

the reinforcement of epoxy is evaluated in Figure 31 with the following

results:

(1) While high-modulus glass reinforced epoxy is competitive
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with the metals for shells only at low sandwich core densities

and the highest compressive loading intensities, asbestos appears

to be a highly competitive reinforcement. Asbestos in epoxy is

more efficient than the metals like titanium for all core densi-
ties, and better even than beryllium at high loadings and low core
densities,
(d) Boron and Alumina., Boron and alumina filaments have as advanced
mechanical properties as any materials projected as lkely candidates for
near future use in composites. Their efficiencies in epoxy are evaluated
in Figure X2 as follows:

(1) For monocoque shells for boost vehicles both boron and alumina
bonded with 30 volume percent epoxy in an isotropic laminate
configuration are substantially more efficient than the metals
like titanium; they are not competitive with beryllium.

(2) Both boron and alumina reinforced epoxies become more
attractive relative to metal construction when used as sand-
wich facings onideal cores of lower and lower density. With
present day core densities and loading intensities comparable
to those for the Saturn V, for example, the boron reinforced
epoxy sandwich considered should provide about 30 percent

weight saving over the best metal construction.
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(e) Epoxy Binder - elastic buckling. The results of Figures 29-32 have
considered only the technologically reasonable case of 30 percent volume
fraction binder and 70 percent volume fraction filaments. This packing
density is representative of current practice for glass-reinforced plastics,
but particularly in view of the rapid increases in transverse stiffness

with better packing noted in Reference 1, study of the effects of changes in
packing density is desirable. To this end Figures 33and 34 have been pre-

pared.

e

7

shells against the volume fraction of binder V) in the composite. The

In Figures33and 34 are plotted values of F=- for the cylindrical
values of F represent the elastic-buckling efficiencies; thus the lower the
F value the higher the efficiency at the low loading intensities for which
elastic buckling governs the design. For comparison the F-values for
titanium and beryllium shells are included (the horizontal lines on the
figures).

Figure 33considers the monocoque shell (core density pc: o0 ),
As would be expected, the composites increase in efficiency with increasing
filament content and with increasing modulus-to-density ratio for the fila-
mentary materials. The universally better efficiency of the isotropic
laminate compared to the 0° configuration is evidenced by the marked
differences in the sets of curves for the two cases. Of interest is the
marked effectiveness of small volume fractions of boron or alumina in

the isotropic arrangement. With the 0° confi uration, high packin
P g g gh p g
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ratios are evidently essential to make reinforced epoxy efficient as a
monocoque shell; not so for the isotropic case, indeed for this applica-
tion there is little to be gained by increasing the packing from the conven-
tional 30 percent binder to the 9 percent or so maximum achieveable with
perfect packing of round filaments.

Figure 34 considers the sandwich shell of core density perhaps
achieveable by best present technology ( pc;: 277 _{{_g or .00/ ,OC/' ).

m

The results are qualitatively the same as for the monocoque shells but
quantitatively less favorable to the composites. In the 0° configuration
only the best filaments in very high volume fractions (volume fractions
so high as to be perhaps not practically attainable) are competitive; in the isotropic
arrangement, however, asbestos, alumina, and boron are competitive with the
metals, but for purely elastic buckling they show no liklihood of sur-
passing the beryllium sandwich. (It must be remembered, however,
that for the boost-vehicle application the beryllium sandwich is not
elastic, Figure 28 and boron filaments even in epoxy binder are indeed
competitive or superior, Figure X).
(f) Epoxy binder - general. The low Young's modulus of epoxy appears
to impose a severe handicap to the development of composites for struc-
turally efficient shells. Both Figures 33and 34 show clearly the long
way that the reinforcement has to go in reducing the F value from that
for the epoxy (the end points, at p = / ) toward the much lower values

representative of the better filamentary materials (the other end points
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at ¥ = 0 ). Clearly the use of a binder with better properties than epoxy

should be helpful in improving the composite efficiencies at all packing ratios.

Effects of the use of other binders than epoxy are considered in the following section.

Alumina and Boron Filaments in Various Binders

(a) Alumina filaments in binders of varying modulus and constant density.
In order to study the effects of improved binder materials the
stiffest fibers (alumina) were considered in binders of the hypothetical
"magnesium'', ''light-alloy II'', '"light-alloy III"', and '"boron'' of Table 4.
Results are shown as the F values for sandwich shells of reasonably ad-
vanced core densities in Figure 35. The vast improvement over the
epoxy binder is immediately evident from the reduced abscissa scale
from that of Figure 34, The isotropic configuration is now only very
slightly more efficient than the axially stiffer 0° configuration, and in
first approximation the F values for both arrangements vary linearly
with binder content between the end points for filaments and binders.
Remembering that for launch vehicles beryllium metal is generally less
efficient than is indicated by its elastic F-value, we conclude that for
this application reasonable concentration of alumina fibers in any of these
binders in any orientation should have the potential to surpass available

structural metals.

(b) Boron filaments in various binders. Figure 36 shows that boron
filaments have even greater potential for launch-vehicle shells than

the alumina filaments of Figure 35, Here a variety of binder materials
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are surveyed, and the results for epoxy resin are used as a reference.
All binders considered are superior to the epoxy for all packing ratios.
The best are the hypothetical ''light~alloys'' with "magnesium'' not far
behind. Quantitatively, 70 percent boron filaments in an isotropic array
in a binder like the (heavy) "'magnesium' of Figure 36 should have an
elastic buckling efficiency (F value) as a sandwich shell 27 percent less
than that for beryllium. For loadings of practical interest (as for the
Saturn V) such a boron-magnesium composite should weigh less than

one-half (44.5%) of the best metal construction.

Special stress conditions in composites

Because of the inherent non-homogeneity of composite materials,
internal stress conditions are encountered that are not found in homo-
geneous metals. To a degree these special stresses are acceptable be~
cause of the high strength properties of filamentary reinforcements.
Often, however, the binder material may be critical, as in the failure
mode discussed in the section "

In any event attention must be paid to the possibility of inordinately high
stresses within the composite.

In this section only the effects of various composition factors
for the composites on some of the special stress conditions will be
evaluated, for further guidance toward the development of improved

composite materials, Typical variations in compressive strengths and
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maximum shear stresses with composition will be considered.

(2) Compressive strengths. The variation of compressive strengths with
configuration, binder content, and filament material for the binder with the
poorest properties (epoxy) is presented in Figure 37. Values plotted were
calculated as described in the section "
Despite the limitations noted for the method of calculation, the following
trends are evident:
(1) The 0° orientation is substantially stronger than the isotropic
configuration,
(2) The advanced filaments (boron, alumina) have the highest
strengths.
(3) The strengths increase substantially at the higher packing
ratios.
Not shown, but evident from the analysis of the section
is the fact that the strengths should increase with improvements in binder
properties over those for epoxy. The combination of all of these factors
suggests that boron or alumina in an advanced matrix with reasonably
high filament concentration will have high compressive strengths. The
only factor which operates differently for providing strength than for
providing elastic buckling efficiency is that of configuration, i.e. the
0° orientation is strongest, but the isotropic array is the most efficient

for elastic buckling.
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(b) Maximum shear stresses. The compression of laminated plates
having anisotropic laminae with principal stiffness directions at various
angles can produce a maximum shear stress appreciably different from
the maximum shear in an isotropic plate in compression. The magnitude
of the maximum shear stress in the laminate is a function of the angles
and anisotropies of the laminae. That these shear stresses may be
appreciable is shown in Figures 38 and 39 (calculated as described in
Reference 1}.

In epoxy binder the maximum shear stresses approach 1.4 times
the applied compressive stress in the alumina -reinforced epoxy with
the isotropic configuration (Figure 38)., These values are approximately
halved if a binder material like "magnesium'' is used (Figure 39). For
the t 30° configuration the shear stresses are much smaller, and, of
course, they revert to the normal factor of 1/2 of the compressive stress

for the 0° orientation.
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Extensions of Efficiency Analyses to Other than Shell Buckling Applications
Really not much can be said with confidence a priori about the extension

of the results of the studies of the efficiencies of composite materials for

the boost-vehicle shell buckling application to other aerospace structural

components with different loading conditions. For example, the similarity

of the efficiency equation for the buckling of flat sandwich plates in compression,

vis.

W

N
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where b:plate width
to that for the cylindrical shell (equation 57 ) would appear to suggest the
possibility of a similarity in the results for the two cases. The fact that
the buckling of flat plates with integral, waffle-like stiffening (Ref. 5) has
shown that the isotropic (J—r 300, 90°) configuration for the stiffening is not
optimum for that case - whereas it was found to be for the composite shell -
however, reduces confidence in the parallelism of the results.

Further, for most applications other than the boost-vehicle shell,
strength rather than elastic buckling may well be the dominant factor, as
it has been in the pressure vessel application to which most past composites
have been applied. Indeed if any conclusi.on of this nature can be drawn from

the results of this first study of efficiency of application, it is that the results
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reinforce the inference that efficiency studies must be carried out in detail
for other applications to evaluate the directions for most fruitful development

of composites therefor.
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Concluding Remarks on Efficiencies

In this concluding section an attempt will be made to review the
significant results that came out of the rather specific analysis made herein
of the efficiency of composite material in as general a way as feasible, for
guidance toward most fruitful directions for future emphasis. These remarks
will endeavor to emphasize (1) results that were surprising (2) results that
showed up areas which were considered unimportant and hence were not
adéquately explored, and (3) results of most significance for further research.
Where possible the general factors which operated to produce these results

will also be identified.

Unexpected Results

The most unexpected beneficent result was that of the effectiveness of
small percentages of boron or alumina filaments in epoxy binder in the
isotropic configuration (see figs. 33 and 34), The resulting composite is
apparently competitive with structural metals (except beryllium) at the low-
loading intensities of the boost-vehicle shell application. There may well
be other applications for which it has especial merit.

A most disappointing result was the failure of the hollow glass fila-
ments to show greater advantages compared to solid glass (fig. 30). Evi-
dently the very low transverse effectiveness of the hollow is more harmful
than anticipated.

Unexpectedly large were the maximum shear stresses for the isotropic

(1 30°, 90°) configuration with epoxy resin (fig. 38). The magnitude of these
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shear stresses may well be a limiting factor in the use of epoxy to yield
an efficient sandwich shell,

The fact that 300 configuration provides generally less axial stiffness
than the isotropic (£ 309, 90°) arrangement (Tables 5 to 12 ) was not
anticipated and is intuitively repugnant. This result may derive from the
still inexactly defined method of calculation (average of upper and lower
bounds) of the transverse Young's modulus of a uni-directionally reinforced
composite. While not anticipated, the effect is not of sufficient magnitude

to be disturbing.

Unobtainable Results

Because of the unexpected good performance of the low percentage of
boron or alumina in epoxy in the isotropic array, it is now apparent that
investigation of more extreme combinations even than alumina and epoxy
might be illuminating. The use of a hypothetical binder of the same modulus
as epoxy and lower density, or both lower modulus and density, would have
helped to clarify this interesting result.

In like fashion the unexpectedly high shear stresses in the +30°, 90°
configuration lead to a desire for knowledge of the corresponding stresses
if isotropy is obtained with a 0°, T 4509, 90° array. The question whether
the benefiéent result with boron and alumina in epoxy is practically negated
by the accompanying shear stresses or can be circumvented can not immedi-

ately be answered.
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Perhaps of lesser interest because there in no sign that it may be
profitable is the question whether hollow filaments other than E-glass lead
to better efficiencies. The question was not explored in the present study,
and on the basis of the results for the hollow glass there is no reason to

explore it unless a hollow with better transverse stiffness is discovered.

Significant Results

Three results of this study are of general significance - one is perhaps
new, the others are perhaps more in the area of knowledge that should be
common and has been here re-emphasized.

The first significant result is the demonstration of the importance of
isotropy to the development of efficiency in the buckling of shells under axial
compression. The isotropic configuration was universally the best for all
reinforcements; similarly the achievement of near isotropy by the use of
stiffer binder materials than epoxy generally improved the efficiency.
Because of the effectiveness of the isotropic shells, perhaps the importance
of isotropy for other buckling structures needs to be re-examined.

The second important result (somewhat related to the first) is that a
better binder than epoxy is needed to take advantage of the improved properties
becoming available in filaments. As shown in several facets of the study,
boron filaments in a binder like magnesium hold much more structural
promise than boron filaments in epoxy.

Finally the fact that all related elements of a structure contribute to

the overall structural efficiency has been demonstrated again in this study,
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and the improvement of one alone (such as the composite shell) may not be
as effective as a lesser change in related areas (such as sandwich core).
In general, the better the core material for the sandwich considered here,
the more effective the improvement of the composite material to use for

the sandwich faces.
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HIGH-MODULUS BINDER STUDIES

Experimental studies, described in detail in Appendix 5, were
undertaken to survey the possibilities of effecting increases in Young's
modulus of the binder materials now available for filamentary composites.
These studies were divided into two areas: (1) investigations of the
mechanical properties of the binders alone, and (2) tests of strength of
filament wound rings utilizing the binders. The results are summarized

as follows:
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Binder Systems
Both filled and unfilled binders were investigated, Starting with a
standard epoxy resin (Kopoxite 159) and a new resin of somewhat higher

initial Young's modulus (Cyclopentenyl-Oxide-Ether, E = 4. 5 g—l\g— or

m

650 psi) a series of modified formulations were made. These formulations
were used for the study of possibilities of particle fillers for raising the
binder system modulus. In general these modified formulations had lower
moduli and greater elongations than the parent resin.

Several types of fillers were used in an attempt to produce a high-
modulus binder system. These fillers included aluminum and alumina
powders, aluminum needles, and calcium carbonate powder. Highest values
of Young's modulus were obtained with the least ductile modification of the
parent resin; a value of E =13.8 ;\i'f (2000 ksi) was achieved at a volume
fraction of 66% by weight aluminum powder. None of the filled resins achieved
the tensile strength of the unmodified, unfilled resins from which they were
compounded. In one case, however (the surface-modified aluminum powder)
the filled resin strength was greater than that for the modified resin used for
that specific combination, Both strength and ductility of the aluminum-filled
resins were dependent upon the surface treatment of the particles, Highest

filled strength was achieved with the calcium carbonate at 48, 3% by weight

filler.

Three Phase (Powder-filled Resin, Filament) Systems

Filament-wound rings were made incorporating the alumina and

calcium-carbonate -filled resins and 12-end E-Glass rovings. As
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might be expected, the filled resin did not infiltrate into the rovings so
that an inhomogeneous ring resulted. Tensile strengths from split disk
tests were less for the three-phase rings than for control rings wound
with the same rovings and unfilled resins, The calcium carbonate filled
system, however, produced rings stronger than a comparable ring
bounded with the unfilled '"high-modulus' cyclopentenyl-oxide-ether"

resin.
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Concluding Remarks

Results obtained in this exploration of three-phase composite
systems neither confirm nor deny the possibility of success for such
an approach, While the strengths in tension attained were less than
for good, normal two-phase systems, they were not so low that they
could not be explained by the inevitable faultiness (use of 12 -end roving
instead of monofilaments, non-optimization of filler, etc.) of such ex-
ploratory tests. Through the use of fillers (either aluminum powder or
calcium-~carbonate) binder systems of substantially enhanced stiffness were achieved,
In one case (the degreased aluminum powder - see Appendix 5 - in the
most ductile resin) the filled resin had an appreciable elongation. In
two cases (the conversion-coated aluminum powder and the calcium car-
bonate fillers) the ultimate tensile strengths were only somewhat less
than for the parent resin. Thus, perhaps in view of the desirability of
improved stiffness binders as demonstrated in the previous section of

this report, further investigations in this area are warranted.
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GENERAL CONCLUSIONS

Detailed, specific conclusions derived from the several studies of
which this report is comprised are given in the sections of the report to
which they apply. In this section more generalized conclusions will be
drawn, particularly regarding recommendations for directions for future
work based on the results thus far achieved., These concluding recom-
mendations are divided into three areas relating to (1) further evaluations
of the potentials of various combinations and new combinations to be
evaluated, (2) further developments in supporting analysis, and (3) sup-

porting experiments,

Evaluations - With the bases available (elastic constants, strengths)
efficiency analyses can be made for all types of structural applications.
This effort can be made less onerous if the results of the shell buckling
study contained herein are used as a guide for the selection of material
combinations and configurations for evaluation. Thus, for example,
the generalization where possible of such results as the importance

of improved binder materials can reduce the combinations of filaments
and binders that need to be studied. Certainly the determination of

the generality of application of the £30°, 90° (isotropic) configuration,
found most suitable for cylindrical shells in axial compression herein,
should be most useful for expediting evaluations of composites for

other structural applications,
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Yet to be evaluated at all are the effects of filament cross-sectional
geometry on the efficiency of application, with the exception of the hollow-
glass filaments investigated here. The merit of elliptical shapes for
increasing the transverse stiffness (reported in Ref, 1) is an example of
the type of advance that needs to be assessed. The hollow, as pointed

out in the text also deserves further attention.

Supporting analyses - Analyses of elastic constants appear adequate

for the guidance of future development of circular-filament reinforced
composites. Effects of geometry of filament now need to be determined.
Perhaps most vitally needed are adequate strength criteria with
consideration for the various combinations of stress possible within the
composite. Thus the effects of the possibly large maximum shear
stresses noted in the shell evaluation need to be evaluated and combined
with analyses like those reported for tensile and compressive strength

to provide insight into the ultimate material behavior.

Experiments - Experimental data are needed in all areas. Not only

the three-phase composite system but all the attractive systems con-
sidered require further experimental investigation. The types of tests
needed range from materials tests to assess mechanisms of failure

to structural tests to assess validity of concepts. Thus, the tests

must range, for example, from photoelastic tests of stresses in the




vicinity of a fiber to static tests to confirm or deny the validity of the

isotropic configuration as outstanding for shells in compression.
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APPENDIX 1

Statistical Models for Fiber Strength

A frequently used model for the distribution function for strength of

brittle fibers is the Weibull distribution, which may be written as:

j(r): Lu(gmﬁ—,ew, (—chcrﬁ) (1-1)

3

where L is the specimen length and and /Z are the two para-
meters of the distribution function. ZFor fibers whose strength is governed by
this function, a logarithmic plot of mean fiber strength as a function of fiber
length would be a straight line. Experimental data for glass fibers (e. g.
ref. 8 ) indicate that such a plot should be bi-linear with the smaller slope
in the very short gage-length region. The following work is the analysis of a
simple model designed to illustrate a possible cause for this bi-linear behavior.
The model is presented to indicate how the behavior of such fibers in a com-
posite can be treated by the method of ref, 7

Brittle fibers shall be considered to consist of a series of fixed length
fiber elements. The strength distribution for these elements shall be related
to that for the fiber in the same fashion that the strength distributions of links

and chains are related. Thus if the fiber links are characterized by a distribution

function, f(0°), the fibers will be characterized by g( ¢ ) given by:

8l



n-|

() = nlce) /i- F(c’)-?
) : (1-2)
where
a
F(eo = § () Lo
o (1-3)

Consider a rectangular distribution as shown in fig., 14a., For this:
f ) : & <)
o = _— <
¢ bh- & A= .
- (1-4)
foy = o TR
o > kK
From (1-3) and (1-4):
(S IR EN
Feey = 1= ax<o <}
Feod = o SERIEN (1-5)
F(o) = o> |
Substituting (1-4) and (1-5) into eq. (1-2) yields:
o < (@Y
c’ (¢) = O
N o ).3
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. L,.,
j(.cs’) = };D::\ ( b‘j\/'> o X o = !‘: (1-6)

The mode of g{o") = ¥ = a

Next consider the double rectangular distribution shown in fig. 15a.

Here:
I(o’) = © o< oy
- r
(() = —— oL e 2O,
O’;-ﬁrl !
(1-7)
4(0,\ -~ ) 1——____,[) a <o < O
) — 3 — — .
S “
- G D>
F(s) = o 4 B
Substituting eqs. (1-7) into eq. (1-3) yields:
F(o") = O O’<O’;
o - & —
F(o) = F(O’K> o £0 5_03_
-
; ; 1-8
.4.',"-4(3 .
— - _ Y ( — 2o Lo
Flc) = F+ (1 W)<‘Z’(S 3 4
F(c’) = | o >"Z,_

For the chain, substitution of eqs. (1-7) and (1-8) into eq. (1-2) yields:




Q‘(o’ ); (a)

no - fzf-(f n -1
§ (c’) S S — —" )
J T, -, /' (& aET=%
cl(cf) =0 <o <% | -9
o “ h("f’) [’ \ ( )<C"‘——C‘; ) -1
s (o7 & ———— 5 (A e o5To< 5
j( ) o - (-r P &, 5 e
j((”) -0 C7>CZ;

This yields the distribution function shown in fig., 15c.

the two peaks are:

() =

] “z‘c’—'
G-p)"
N{t—rp

c((ja')_—_ ___,_,_ﬂ__

J 5 -

It is seen that the mode changes from &,
>

to CT. at some value of n,

The values of

(1-10)

(1-11)

The

value at which they are equal is plotted in fig. 16 and is obtained by setting:

J(cﬁ) = j(ﬂ)

From eqgs. (1-10) to (1-12):

(1-12)
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o [0 (222)]
| 'o] ('~F>

The average strength for a given length fiber composed of n links taken

Nz

(1-13)

from the population characterized by egs. (1-7) is found as follows:

Vg
& - ‘S o a(s) ko
o j (1-14)
5 _ n-l
.= ho -0, 1 ‘
..J-J?}& pf(;ﬁ; Moo +
o3
' (1-15)
c; N n-1
g ho’(l’r) ( T, —c:>
o, -0 o
which yields 6’? M +
. O’;_O’ +1 y
(o e [ —_ () f) ? '——ﬁr(n*l\ 1_/— (1- F) J-r
(1-16)
I -5
("(r) 0/3 M«f—l (’ 6’)

Eq. (1-16) is plotted in fig., 17 for selected values of p and ¢ . Itis
Py

seen that the bi-linear distribution is very well simulated.
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APPENDIX 2

Compressive Strength of Fibrous Composites

The compressive strength of a fibrous composite is evaluated by
treating the elastic stability of a two-dimensional array of layers of fiber
and matrix material, The fibers are considered to be relatively stiff as
compared to the binder and hence shear deformations of the fiber are
neglected. Instability will be evaluated by utilizing the energy method.
The change in strain energy for the fiber, & \(‘- , and the binder, AVi, as
the composite changes from a compressed but unbuckled configuration
to the buckled state will be equated to the work, AT , done by the fiber

loads, Thus,

o

AV‘[ +Avb = Al (2-1)

For the two dimensional case the load @ r running inch on each fiber can

be expressed as the produce of fiber stress, 0: , and fiber thickness, h:

7= o h (2-2)

The procedure then is to assume various buckle patterns and find the lowest
buckling load, If all terms in the strain energy are appropriately considered

each of these buckling stresses will provide an upper bound; and the lowest
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of these values may be taken as a buckling load. The cases to be considered
herein are the two cases shown in fig, 3 where the buckling pattern in all
fibers is of the same wavelength with adjacent fibers either in or out of
phase with one another. The mixture of the two can be expected to have a
buckling stress larger than the smaller load for the two individual modes.
Each fiber will be assumed to buckle into the sinusoidal pattern expressed

by the following series in v, the displacement in the y direction:

.o NI
vV = é % g in X (2-3)
n L
h
Tor the extension mode, the transverse strain is assumed to be
independent of the y direction so that:
£ ~
) < (2-4)
v
and ‘77 = k/b c (2-5)
The changes in strain energy associated with the axial and shear
stresses are considered negligible with respect to those due to the trans-
verse stresses, Thus
,
ANV = L (W ¢, kv
b = y T/ (2-6)
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Substituting eqs. (2-3) to (2-5) into (2-6) yields:

- < o
Avb‘ 2¢ /T"’

4+ _ 3
.
AV = b b ol
+ 4+ LS <N A

Pt < nzc\l
and Al = +L 5 K
Substituting eqs. (2-7) to (2-9) into (2-1): _
4[

s " 24L £y = o2

'P ’,’2%}\ ?”o‘h“"“rr"ck’[{ < 7n

12 ) 2 2
zL é h C\h
n

Expression (2-10) is a minimum for one value of n, say m, hence

2 2 4
O’L = Z}’h‘ + —— (———\
Cr 2 LT mt

7 b £‘+. _

Since m is large it may be treated as a continuous variable and

eq. (2-11) can be minimized by setting

(2-7)

(2-8)

(2-9)

(2-10)

(2-11)
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fe.
e A (2-12)
dm?
This yields
eS
v, £, &,
- 2 ______,_.4’__
o, , (2-13)
fer 3¢~V
h
where V = (2-14)
£ h+2cC

(2-15)

The critical strain, C'u , can be evaluated from eq. (2-13), Thus,

% 43

— - [/

& =2 ZLN <'—»"> (2-16)
- . , E"‘

Cv 3C=Vy) £

The shear instability mode is evaluated in a similar fashion. Here

the displacements of all fibers are assumed to be of the same amplitude and
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in phase with one another, The shear strains are assumed to be a function

of only the longitudinal coordinate. In the binder;

. éu
X = Y © Ax
g J x 57 (2-17)

du
+ X

Since the transverse displacement is independent of the transverse coordinate,
y:

Ju,

du
ny )

d x £ (2-18)

Since the shear strain is independent of y:

du, :
-~ = ;'" Zux('c) —ux(—c)J

ce/ Jc (2-19)
Since the fiber shear deformation is negligible:
ok y
u\/(c) - 2 Tx (2-20)
¢
Substituting (2-19) into (2-18):
el X N
—_ C,L/ (2-21)
Cf}’ 2¢ L(X ‘F

Substituting (2-21) and (2-18) into (2-17):

93




] 2¢ e (2-22)
and ZK/ - ég }"'/ (2-23)

The changes in strain energy associated with the extensional stresses are

considered negligible for this case. Thus:
f. |
AV = = { YA A4 (2-24)
b 2 ) xy %
v /

Substituting eqs. (2-3), (2-22) and (2-23) into (2-24) yields:

s h t 772 N T
aV - : 2 (,.>s 2-25
h ébc ;+Z(> — ?q,\h ( )

Using eq. (2-25) in place of eq. (2-7) in eq. (2-1) and proceeding as for

the extension mode,

%, " - * 725(‘2\)2 (2-26)

‘CCy VLO-V*F) {2 T

Since L/m is the buckle wavelength, the second term in eq. (2-28) is
small for wavelengths large compared with the fiber diameter, and the

buckling stress is given approximately by:

Lt



o = 2 (2-27)
‘rcr V;: (V"‘/‘; )
and o - Cb (2-28)
o ’,y/—e
{ F G, )
€. T — — 2-29
<r ',4- (,_‘/‘:\ ( E( ( )

The lower of the values given by eqs, (2-15) and (2-28) is the best

estimate for the compressive strength.
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APPENDIX 3

Laminate Stress Analysis

The analysis of stresses in a laminate follows that of Ref, 16
but is modified to evaluate elastic constants and simplified to neglect
coupling between bending and extension. The laminate is considered to
have a large number of symmetric laminae so that the bending stiffness
and extensional stiffness are related in the same fashion as they are for
an homogeneous material. This also results in bending and extensional
stresses being uncoupled. Transverse shear is also neglected.

The stress-strain law for each layer relative to the lamina prin-

cipal axes is:

o - CU'GJ b 1,243 (3-1)
0; = stress
GJ' = strain
¢, = elastic constants
I and a repeated index denotes summation

For the orthotropic lamina of a filament wound material:

crl CIZ o
o= ]oe, C.a 0 (3-2)
o 0 C.‘H
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where these stiffnesses are related to the conventional elastic constants

by
(k)
NG |
i ] - (k) L (/()
/ 21 s
- (k) -
e £,
2z " (k) , (k)
1=,
(k) - (k)
LW W) v, E,
12 R - (k) . (k
/- )/ )
21
(k) .
¢ s
3 LG,
L—, = Young's modulus in fiber direction
EZ = Young's modulus normal to fiber direction
G,, = Shear modulus in fiber plane
K, = Ratio of strain in the 1 direction to strain in the 2
direction for uniaxial stress in the 2 direction
The elastic constants in the principal laminae directions are
defined by:

o

C{‘/' é;/ (3'4)

9

where the overbar denotes quantities referenced to the laminate axes.

These constants can be obtained from the lamina constants by coordinate
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transformations of the stress and strain as follows:

7 - T (2-5)
T
where
. cosl g sin% ¢ 2sin @cos @
T. - [T = sinl © cos2 @ -2sin @ cos @
l] -sin @ cos & sin& cos@ c0529 -sin“@

Substitution of (3-5) and (3-4) into (3-1) yields:

co= L. e T (3-6)

{/ tm mn nj

where the Lj;

] are the elements of the inverse of the Tij matrix,

Consider a laminate of n layers subject to in-plane loads. Since
transverse shear and coupling between bending and extension have been
neglected the strains in all layers will be the same and the average

g

stresses, ( j, will be:

2
= Nis
9
=

(\\»

(3-7)

& eJA-/

where t, = fraction of total thickness in kth layer and
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Equations (3-7) may be rewritten

¢ = B, T (3-8)

/ /

where the Bi'

j are the elements of the inverse of the Ai' matrix,

J

This is the solution for lamina strains as a function of applied
stresses, {
From Equation (3-8) the desired elastic constants can be defined

as follows:

L
il

_ /
E - =

r 22

(3-9)
() ) /
=

s 8‘55
. Ba

TL ‘57“
_ B,

Lr ) BZZ
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The stresses in the kth lamina are now given by

= )

= C €, -
. i/ g (3-10)
and the stress components within any lamina referenced to axes making

an angle, @4, with the longitudinal and transverse axes are given by:

a-
{ L /

(3-11)
where the Ty; contain <A in place of € .

The elastic constants of equation (3-9) and the stresses of equation
(3-11) have been evaluated for various geometries. The results are

discussed in the text,
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APPENDIX 4
Elastic Stability of Filament Wound Cylindrical
Shells Under Axial Compression
The stability analysis of filament wound cylindrical shells is a small
deflection, classical analysis of anisotropic shells. The work utilizes the
results of ref. 2. Under the assumptions that transverse shear strain is
negligible and that each bending stiffness is related to the appropriate
extensional stiffness in the same fashion that bending and extensional
stiffness of homogeneous materials are related, the buckling stress, J;

cr?

is obtained from eq. A4 of ref, 2,

The buckling stress equation can be written in the following form:

K = :;i’ = ()/4{/"/&& *ﬂ?% ?
(4-1)
] /
ot (z2) [ £ 5,0 - 4
where
? = T

T2
/2.(/- 7

G /

3 SGur

g, = 2. ( )t:: J
£

. fr
4 - E (4-2)

T
“a Gy a7
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« = shell length

K

shell radius

K]

m = longitudinal wave number

Nn = circumferential wave number

/- = longitudinal direction

7 = transverse or circumferential direction

For long cylinders, the longitudinal wave number may be treated as
a continuous variable and the buckling stress can be analytically minimized
. . . . . 2 2 .
with respect to it, For simplicity, m and }ﬁ will be treated as the

independent variables, rather than m and n . Thus:

= 0 (4-3)

Substituting eq. (4-1) into eq. (4-3):

/

) gy 1ot " #7]

()l epctta 9] - —

( ! Vi
(('3)/‘5[’ WIX VNN (%’3)‘/;;— B0 ] } (4-4)

. Z

The minimum stress is then defined by substituting eq., (4-4) into eq. (4-1):
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(ALt s 0 )
-'TTRi[",é;*ﬁ*W* ¢4J 5

(4-5)

k

Next the circumferential wave number will be optimized by assuming

that it is valid to treat it as a continuous variable. Thus:

ok

-— =0 (4-6)
a¢*

and from eqs. (4-1) and (4-6):

IR A o I N2y o) R RN | o A S
5 (

4-7)

For an isotropic shell:

b, - /8, = o =

and any value of /(ﬁ along with the M value defined by eqs. (4-4) gives
the same buckling stress. When eq. (4-8) is not satisfied one of the following

must exist:

/ rﬂz ;25'& ’Lﬂ_g ¢4 — 0O (4-9)
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Also the case

g=- 0

must be considered as it is the value at one end of the allowable range.

either (4-9), (4-10) or (4-12) it is apparent that eq. (4-5) reduced to:

k-2 (54"

From eqgs. (4-11) and (4-5):

) | ﬂz
2+
2+ 4,8,

2 /3
k- 1z(44)

Substituting eqs. (4-2) into eq. (4-13) yields:

- /:
% (F (S )

L
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(4-11)

(4-12)

For

(4-13)

(4-14)

(4-15)



Substituting eqs. (4-2) into eq. (4-14) yields:

- / '-I,'/Lsg[/.rz(l A 2/:.
a‘;":jELE LJI- (4-16)
bl ST

The lower of the values obtained from egs. (4-15) and (4-16) is the

G\

small deflection theory result for orthotropic cylinders and this is the value
used in the studies described in the body of this report,

Recent attempts to evaluate the wave numbers implicitlyin the above
minimization ha ve indicated the existance ofabranch of the curve not pre-
viously considered. This is presently being studied to determine if this

results in lower buckling stress values for any of the ranges of parameters

considered,

105




EPOXY resing are

43

on the followis

it
fomt
[ew]

D
DD

- i
o
25
50

o

i
=
o
o
o
i
5

[T

]

,_.
o
V]
(&3

Since Kopoxite 159 {a relativelv purs vesorcinol diglycidyl ether) tended to

;

crystallize on standing 2t rocom temperature, the formulations were made

r componants until
a hormogeneous mixture wzs achieved. lztions were then vacuum
de-aerated apd cast in a mold 1/4" x §" x 11", After cuving the 1/4'" sheet of
plastic was cut into tencsile specimens and tested,

Further investigations were undertaken using Kopoxite 159 and curing

agents other than MNA ("Nadfic Methyl Anhydride'). The following table lists
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two formulations of interest:

Series Kopoxite Methyl Nadic BDMA  Moleic Harcure
159 Anhydride Anhydride E
20 100 1 65
21 100 80 1 102

These materials were prepared in order to determine the effect of various
molecular constituents on the physical properties of epoxy castings. Formu-
lation 20 darkened considerably upon curing, and was quite brittle. Formula-
tion 21 was soft and flexible,

The tensile data obtained on these materials are outlined in Table A,
These data illustrate the range of properties that can be achieved by modifying

the constituents of a resin system, and altering reaction ratios in a judicious

manner,
Table A. Mechanical Properties of
Resorcinol Diglycidyl Ether Formulations
Series UTS, psi Young's Modulus  Elongation to
psi Break To
14 9, 6-10,5 x 103 .482-.534 x 10° 2.3 - 2.7
(PJ122A) 1&2  9,1-12.0 x 103 .445-, 490 x 10° 1.4 - 2,2
(PT122B) 14 8.1-8.3 x 10° .331-. 368 x 106 5.2 - 6.5
(PJ122C) 19 5.7-5.9 x 10° .277-.284 x 10° 10
20 13, 6-13, 8 x 103 .503-.557 x 10° 5.3 - 8.9
21 unable to break ,095 x 106 25
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Cyclopéentenyl Oxide Ether Based Resins

Two new epoxide resins were investigated.

ERLA 0400

and

ERRA 0300

These resins were incorporated in the following formulations, which

were cast into 1/4" x 8'"' x 11" plates, machined and tested,

Cyclopentenyl Oxide Ether Based Formulations

Series Resin Curing Agent Polyol
25 ERRA 0300 Moleic Anhydride Trimethylol Propane
94, 2 pbw 83.5 pbw 9.0 pbw
26 ERRA 0300 m-Phenylene Dia- -
mine 80 pbw
27 Repeat of #26 using filtered resin
12A-34-2 ERRA 0300 m-Phenylene Dia- ---
mine 108 pbw
12A-34-3 ERLA 0400 Curing Agent 2 ---
10. 8 pbw
12A-34-4 ERLA 0400 m-Phenylene Dia- ---
mine 108 pbw
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Series 26, 27, and 12A-34-2, upon examination after curing, were found to
contain numerous small flakes of brown material, in spite of the great care
having been taken during casting to filter the uncured resin, By contrast,
12A-34-4 was free of defects after curing, as was Series 25. An attempt to
cure Series 12A-34-3 was met with failure when the cured piece was examined
and found to have shattered inthe mold. The two successful pieces and
12A-34-2 (to evaluate the effect of inclusions) were machined into tensile
specimens and tested for mechanical properties., Results are outlined in
Table B, These data show that the strength characteristics of these resins,
using in-phenylene diamine as the curing agent, are only slightly higher
than the Kopoxite 159 based resins,

Table B. Physical Properties-Cyclopentenyl
Oxide Ether Resins

Series UTS, psi Young's Modulus | Elongation to
psi Break %
25 6.15-715 x 10° 2.4 - 5.4
12A-34-2 9,58-13,3 x 103 .632-.676 x 10° 1.6 -2.5
12A-34-4 13, 6-15.0 x 10° .620-. 679 x 106 2.3 - 2.1

Filler Studies

Aluminum Fillers

Aluminum flake, aluminum powder, and aluminum needles were
investigated, Leafing grade aluminum flake was incorporated into series
PJ122A resin to the extent of 30% by volume (approximately 50% by weight),

The result was a very thick pasty mass that was impossible to de-aerate
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using vacuum techniques, or centrifugation to 20,000 RPM. These difficulties
were attributed to the tendency of the flake aluminum to overlap and link in
addition to the thixotropic effect of the finely divided particles. Due to these
difficulties, no flake aluminum filler pieces were produced that were suitable
for fabrication into test specimens,

Alweg PF aluminum needles have undergone experimentation in which
specimens of the needles (0.27'" length by 0.028" to 0,032" diameter) were
encapsulated in Series PJ122C resin. Encapsulation was accomplished by
first spreading a layer of needles 1/2' deep in a flat pan, pouring resin on
top, then de-aerating under vacuum. After curing the casting was machined
into tensile specimens and tested.,

Aluminum powder, approximately 325 mesh, was incoporated into
series PJ122C resin to the extent of 11% by weight of aluminum, and 34% resin,
Since the aluminum powder was suspected of being coated with oil and other
contaminants, experiments were performed in which solvent cleaned aluminum
was used as the filler. The use of two surface active agents, 26020 and All00,
was investigated in an attempt to improve adhesion between the filler particles
and resin matrix. Finally, the use of a chromite/phosphate etch to conversion
coat the aluminum particles was attempted in an effort to improve composite
properties.,

Solvent cleaning of the aluminum powder was accomplished by washing
the material several times in ligroine and decanting off the excess, then washing
with acetone and removing the excess by suction through a Buchner funnel, If

the powder was to be used as the filler in a system containing a surface active
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agent such as 26020 or All00, the agent was mixed into the resin before the
aluminum was added, then the filled formulation was handled in the usual
manner,

Chromate/phosphate etching was done by first pouring approximately
500 g aluminum powder into 1000 cc of 5% Detrex solution at 110°F, and allowing
this mixture to stand 15-30 minutes. The excess solution was then decanted
off, and the aluminum washed with water several times, using a Buchner
funnel to pull off the last traces of liquid., The aluminum was then poured into

a cold solution of 4500 cc H20, 750 cc 98% H2504, 150 g NaZCrZO7 and allowed

to stand ten minutes, at the end of which period the excess chromic acid was
poured off, and the aluminum powder washed with water, then acetone, and
dried by suction using a Buchner funnel. It was necessary to exercise a great
deal of caution during the chromic acid wash, since the large surface area of

aluminum exposed tended to cause violent reactivity and generation of H, gas.

Alumina and Calcium Carbonate Fillers

In view of the problems associated with using aluminum fillers, such
as the difficulties involved in de-aerating aluminum filled composites containing
very fine particles, some investigations were performed using 900 mesh
Al,03 (15 micron maximum particle size) and Surfex MM CaCOjy (3 micron
maximum particle size).

The following table summarizes the experiments performed on resin
filler combinations, giving details of the formulation. All formulations were
vacuum de-aerated prior to casting., Curing was accomplished in a circulating
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air oven at 250°F for 16 hours. After curing, the 1/4" x 8" x 11" plates were
out into tensile specimens and tested on the Instron machine at ambient
temperature, using .05"/min rate. An examination of the data in Table C
discloses a number of interesting characteristics relating to the several
fillers, surface active agents, etc. Of the aluminum powder filler materials,
Series 24 displays the lowest strength and highest elongation to failure, in
spit of having incorporated into it both degreased aluminum and All00 surface
active agent. This implies poor adhesion of the All100 to the aluminum particles
since Series 23, which was made using a silicone grease coated aluminum
powder filler displayed slightly better physical properties., The best surface
treatment for the aluminum appears to be the chromate/phosphate etch, which
was used to make the Series 30 formulation, and which displays the best strength
characteristics of the aluminum filler composites, indicating good adhesion of
the resin to the aluminum particles., It is of interest to compare Series 30
made with a relatively low modulus resin, and Series 12A-29-5, which was
made with a slightly higher modulus resin, and the same filler, treatment,
and cure cycle. The disparity in physical properties may be attributed to the
inability of the more rigid resin to adjust to small changes in dimension, plus
its greater match sensitivity and decreased resistance to crack propagation,
The poorest performance of all the aluminum filled materials was displayed
by 12A-28-3, which was filled with aluminum ''needles''. This performance
may be due to the shape of the aluminum particles, which are shaped more

like spindles than needles, and have a relatively small length to diameter ratio.

1i2



Filament Wound Composites

Seven filament wound structures were made, using HTS-E 12 end
fiberglass roving as the reinforcement, and both unfilled and filled (with
fine particle fillers) resins as binders. The winding machine was programmed
to position the roving at the rate of twenty to twenty two strands per inch,
producing circumferentially wound cylinder having an eight inch inside
diameter, 3.75 inches long. All the cylinders had six layers of glass roving
in the structure, but wall thickness varied depending on resin viscosity and
filler concentration. After winding, the cylinders were cured, while rotating,
at 250°F for sixteen hours. The cured cylinders were then machined into
1/4'" rings for testing using a split disc technique. Fig. 40 illustrates the test
set up, with a ring in testing position. Table D outlines the data gathered
on the filament wound composite structures tested in this program. An
examination of the tensile strength characteristics of these composites shows
that cylinders ""A'" and ""B'' displayed the greatest hoop stress values. Cylinder
"B'" was the more uniform of the two, but values are very similar for both
pieces.

Cylinders "C" and '"D'" employed the same resin system as cylinder
"A'", but in addition contained a quantity of 900 mesh alumina filler in order
to increase the modulus of the binder. The tensile strengths of these test
specimens bear a direct relationship to the quantity of particulate filler
added to the resin system, and indicate that increased filler content decreases

composite strength. Both "C'" and ""D'" composites are much weaker than the
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t4 composite, which contains the same resin, but no particulate filler, The

decreazse in strength of the filler system may be attvibuted in part to the

AN
5
1
[$3)
n
=
<
o
[
=
jaY)
I}
oY)
)
1
3
n
-
i
]
4]
w

~ter of the alumina filler, and in part to the increase
arez occasioned by the bulking of the entire system by the addition of the filler,

Cylinders "E" and "F' have comparable hoop tensile strengths., These
specimens used "'Surfex MM filler in place of alumina, incorporated into resins
dentical  with the binders used in "A' and "B". It is interesting to note that
the lensile sirength values of "E'" and "F'" are lower than ""A'" and "B", but
than alumina, and the decrease in strength upon comparison with "A' and "'B"
ig due primarily to the bulking of the resin system Dby the filler,

Cylinder "G'" was made using a cyclopentenyl oxide resin system cured
with meta phenylene diamine. In spite of the relatively good physical proper-
ties of the unreinforced resin (identified as 12A-34-4) the filament wound
composite displayed tensile strength characteristics that were not as good
as those specimens made with resorcinol diglycidyl ether. This disappointing
result may be attributed to the fact that there appeared to be poor adhesion
between the resin and the glass fibers, since the strands of glass in the rings

were easily separated by a moderate twisting action,

Microscopic Examination of Filament Wound Rings

Specimens of all filament wound pieces were encapsulated in resin,

cross sectioned, polished, and the polished surfaces examined under the




microscope for details of structure. Visual observations of these pieces are

recorded as follows:

Specimens ""A'"" and "B'": These specimens appeared to be very uniformly

wound of close packed sets of fiber bundles, with good resin wetting throughout.
The adhesion between fiber and resin was excellent, and there appeared to be
few included air bubbles.

Specimens "C'" and ""D": The structures of these rings were quite

similar, in that both appeared to be composed of fairly discrete bundles of
glass fibers separated by areas of filled resin. The bundles of fibers appeared
to act as strainers to filter out the particles of alumina, so that the fiber
bundles themselves were stuch together with fairly pure resin, while around
each bundle was a sheath of filler epoxy resin. The bundles appeared to be
dispersed in a random fashion throughout the resin matrix. Many air bubbles
were present,

Specimens "E'" and "F'': The cross sections of these rings looked

very similar to those of specimens '""C'" and ''D',

Specimen ""G": This cross section appeared to have a uniform array of

glass fibers throughout, with few air bubbles noticeable.
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Specimen
Number

Bl
B2
B3
B4
B5

Cl
Cc2
C3
C4
C5
C6
Cc7

Table 1

Thin Fibrous Composite Tensile Tests

Maximum
Number of
Breaks

37
31
34
13
24(36)%

21
28
19(37)%*
33
22
20

Maximum
Load

210
222
221
207
197

195
181
184
196
200
206
203

Number
of Fibers

125
130
130
131
129

125
124
126
126

128
122

Fiber Area
(in?)

.272x1073
.323
.323
.333
. 313

f— bt e

Average stress
Standard deviation

.272x10"3
.262
.283
.283

bt pmd et

1.303
1,242

Average stress
Standard deviation

Number in parentheses observed after maximum load.
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Maximum
Fiber Stress
(ksi)

165.
167,
167.
155,
150,

O w O W

161,
7.1

o

153.
143,
143,
152.

W > W

158, 1
163, 4

152. 4



TABLEZ,

Compressive loadings for launch vehicles.

Vehicle Thrust, kN Diameter, m Ny kN
(1bs.) (in.) Rs m 2
(psi)
Redstone 347 1.778
(78,000) (70)
Scout 383 0.991 469
(86,000) (39) (68)
Thor 756 2.438
(170, 000) (96)
Atlas 1730 3,048 51,75
(389,000) (120) (7.5)
Minuteman 756 1.803
(170,000) (71)
Titan I 1334 3.048
(300, 000) (120)
Titan II 1913 3,048
(430, 000) (120)
Saturn V 33,360 10.160 302
(7,500,000) (400) (43.8)
Nova 111,200 24,38
(25,000, 000) (960)
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TABLE 3. Mechanical properties assigned to idealized metals
for comparison with composites.

Material Density Young's Modulus Yield Stress Poisson's Ratio
Mg/m3 GN/m? GN/m?2

(pci) (ksi) (ksi)

Steel 7.89 207 2.07 0.25
(0.285) (30,000) (300)

Titanium |4.82 103 1,38 0.145
(0.174) (15,000) (200)

Aluminum 2.80 73.8 0.483 0.315
(0.100) 10,700) (70)

Magnesium|1. 34 42,75 0.124 0.43

~-Lithium |(0.0485) (6200) (18)

Beryllium 1.83 293 4,00 0.09

(0.066) (42,500) (58)
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TABLE 4, Mechanical properties used for filamentary and binder
materials surveyed for composites.

Filaments

Hollow E-Glass
Solid E-Glass
Hi-Modulus Glass
Asbestos

Steel

Beryllium

Boron

Alumina

Binders

"Epoxy!'!
"Light-Alloy I"
""Magnesium"
"Light-Alloy II"
"Light-Alloy III"
"Boron"
"Titanium"

""Steel"

Young's Modulus Demnsity Poisson's Ratio

GN/m? Mg/m3

(ksi) (pci)

72,45 2.56 0.20
(10,500) (0.0914)

72.45 2.56 0.20
(10,500) (0.0914)

110 2.56 0.20
(16,000) (0.0914)

183 2,44 0.20
(26,500) (0.087)

207 7.9 0.25
(30,000) (0.283)

276 1.85 0.09
(40,000) (0.066)

414 2.32 0.20
(60,000) (0.083)

518 4.0 0.20
(75,000) (0.143)

3.45 1.40 0.35
(500) (0.050)

103.5 1.40 0.30
(15,000) (0.050)

51.75 2,10 0.30
(7500) (0.075)

103.5 2,10 0.30
(15,000) (0.075)

207 2.10 0.30
(30,000) (0.075)

414 2.10 0.30
(60,000) (0.075)

103.5 4,20 0.30
(15,000) (0.150)

207 8.40 0.30
(30,000) (0.300)
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Table 5A, ELASTIC CONSTANTS OF FIBROUS COMPOSITES
Isotropic Laminates
Epoxy Matrix
i Fiber Material
v Hollow | Solid |Hi Mod.|Asbes- Beryl-
b Property E-glass |E-glass|Glass tos Steel lium Boron |Alumina
0 E* --- 10,500 | 16,000 {26.500 |30.000 |40,.000 |60.000 | 75,000
v - 0.200 0,200 0.200 0.250 0,090 0,200 0. 200
. --- 0.0914| 0,0914f 0.0870| 0.2830] 0.0660} 0.0830] 0.1430
0.15 E 1, 803 5,494 7.398 110,711 11,764 | 14,782 |20,567 | 24,883
v 0.124 0. 251 0.264 { 0,280 0.297 0.270 0.303 0.308
V7 0.0355¢ 0.0852; 0.0852{ 0,0814 | 0.248 0.0636| 0,0805| 0,129
0.30 E 1. 507 3. 947 5.335 7.876 8.706 | 11,097 |15,781 | 19,296
g 0.155 0.275 0.287 0,301 0.311 0.297 0. 316 0. 319
Y 0.0380{ 0.0790; 0.0790{ 0.0759} 0.213 0.0612 | 0,0830f 0,115
T
0.45 E 1. 268 2.970 4,020 5.980 6,626 8.484 [12.154 | 14.910
" 0.188 0.288 0.299 0. 309 0. 316 0.308 0.321 0,323
kg 0.04064 0,0728] 0,0728} 0.0703| 0,178 0.0588] 0.0681} 0,101
0. 60 E 1. 050 2.195 2,946 4,361 4.829 6,174 8.842 |10.844
e 0.218 0.296 | 0.304 | 0.313 0, 319 0.313 0.323 0.325
Y 0.0432] 0.0666] 0.0666] 0,0648; 0,143 0.0564) 0.0632; 0,0872
0.75% E 0,839 1. 517 1. 983 2.864 3,156 3.994 5,661 6. 912
v 0.245 0.299 0.307 0. 315 0. 319 0,315 0.324 | 0.326
| VA 0.0457] 0.0603] 0.0603} 0.,0592| 0.108 0.0540 0,0582; 0.0732
1
! :
0.90 E 0.634 | 0.894 ! 1.080 1. 431 1,548 1.883 2.550 3.050
v 0.275 0.300 | 0.306 | 0.313 0. 316 0.315 0.322 0.324
/ 0.0483] 0.0541; 0,0541| 0.0537| 0.0733] 0.0516 | 0.0533§ 0.0593
1. 00 E 0.500 0.500 0.500 0.500 0.500 0.500 0.500 0.500
v 0. 300 0. 300 0. 300 0. 300 0. 300 0. 300 0.300 0. 300
A 0.0500} 0.0500| 0.0%00| 0.0500§ 0.0500{ 0.05001} 0.0500 0.0500
% 100 psi ; +  #/in3
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Table 6.

Uniaxial Laminates
Magnesium Matrix

ELASTIC CONSTANTS OF FIBROUS COMPOSITES

I Fiber Material
v Hollow | Solid |(Hi Mod.|Asbes - Beryl-
b Property! E-glass|E-glass| Glass tos Steel lium Boron |Alumina
0 E} - 10.500 {16,000 | 26,500 {30,000 {40,000 |60.000 |75,000
; - 0.200 0.200 0.200 0.250 0.090 0.200 0.200
/)“L - 0.0914} 0.0914| 0,0870; 0,2830| 0.0660] 0,0830} 0,1430
0.15 Epf | 4,347 10,061 | 14,736 23,661 |26,628 [35,173 |52.136 64,886
| Ep¥ 1.441 {10,007 {14,177 |20.981 {22,901 }28,254 ]36,123 |40.882
! Glz* 1.163 4,104 5,812 8, 605 9.148 112.260 {14,820 |16.76l
‘él 0.229 | 0.215 0.214 0.213 0.256 0.116 0,212 0.212
YV 0.0392] 0.0889; 0.0889; 0.0852| 0,252 0.0673] 0,0818 | 0,133
0. 30 Eq 4,908 § 9,517 13,468 20,818 [23.255 [30.331 |44,269 [54.769
E, 1.978 1 9.540 {12,669 | 17,206 |18,322 |21.547 {25.344 |27.466
Gy 1.388 | 3,853 5.097 6,894 7.213 8.885 (10,085 {10,907
¥, 0.250 | 0.230 0,228 0.226 0.263 0.144 0.225 0.224
/0 0.0455] 0.0914¢ 0,0865| 0.0834; 0.221 0.0687{ 0,0806( 0.123
0. 4% Ey 5.467 | 9.17¢ {12,196 |17.972 }19.881 125,474 }36.398 |44.648
E> 2.722 3 9.085 § 11,346 | 14,304 {14,950 {16,928 {18,862 {19.915
G 1,639 1 3,619 4,491 5,626 5,815 6. 740 7,348 7,741
7{2 0.266 | 0,245 0.242 0,240 0.270 0,173 0.238 ¢ 0,238
N 0.0518) 0.0840{ 0.0840} 0.0816 | 0.189 0.0700} 0,0794, 0,112
0. 60 By 6,023 | 8.720 110.921 15,122 {16,506 |20.599 |28.523 [34. 523
E, 3,706 | 8.636 10,138 11,952 12,307 |13,477 |14.450 |14.983
Gz 1. 922 | 3,401 3.970 4, 650 4,756 5.256 5.556 5.757
¥y 0.278 | 0.260 G, 257 0. 255 0.277 0. 205 0. 253 0,253
f 0.0582) 0.0816| 0.0816| 0,07981 0.158 0.0714 | 0.0782| 0.102
i
|
0.75 E; 6,578 | 8,2£5 | 9,642 {12,268 (13,130 {15,705 {20.644 24.394
Es 4. 931 8.196 | 9.050 |10.013 110.183 1}10.807 | 11.258 | 11.517
(13}2 2,243 | 3.197 : 3,158 3.874 3.928 4,169 4,311 4, 397
24 0,288 | 0,275 0.273 0.271 0.285 0,239 0.270 0.269
/; 0.0645] 0,0791} 0,079 | 0.0780| 0.127 0.0727) 0.0770| 0.0920
0.90 B, 7.131 7,807 8.358 9.409 9,752 {10.790 |12.759 |14.260
E, 6.384 | 7.771 1 8.079 8. 411 8. 466 8.701 8,861 8.965
G2 2, 610 3,006 3,122 3,244 3,261 3,336 3.386 3.407
75 0.295 | 0.290 0.289 0.288 0.294 | 0.275 0,287 0.287
/ 0.0708] 0.0766] 0.0766] 0.0762} 0.0958¢ 0.0741 ¢ 0,0758} 0,0818
1.00 E 7.500 7.500 { 7.500 7.500 7.500 7.500 7.500 7.500
" 0. 300 0.300 § 0,300 0. 300 0. 300 0.300 0. 300 0. 300
I 0.07504 0.0750{ 0,0750} 0.0750 ] 0.0750} 0,0750 0,0750| 0.,0750
* 10%psi ; +  #/in°
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Table 6A. ELASTIC CONSTANTS OF FIBROUS COMPOSITES

Isotropic Laminates
Magnesium Matrix

Fiber Material
vp Hollow | Solid |[Hi Mod, |Asbes - Beryl-
Property |E-glass |E-glass| Glass tos Steel lium Boron |Alumina
0 ol --- 10,500 | 16.000 [26,500 {30,000 | 40.000 {60,000 |75.000
v - 0.200 0.200 | 0.200 0.250 0.090 0.200 0.200
P+ -—- 0.0914¢ 0,0914| 0,0870{ 0,2830| 0.0660| 0.0830| 0,1430
0.15 E 2,817 110,014 | 14,336 |21,815 124,099 |30.388 | 41,293 | 48,667
v’ 0.142 0. 216 0,216 0.218 0.258 | 0.141 0.227 0.232
A 0.0392{ 0.,0889{ 0.0889} 0.0852| 0.252 | 0,0673| 0,0818] 0,133
0.30 E 3,376 9.545 112.877 |18.275 |19,984 {24,163 | 31,319 |36,704
v 0.164 0.232 { 0.232 | 0.236 | 0.267 0.180 0.249 | 0,254
A 0.0455{ 0,0914] 0,0865| 0,0834} 0,22} 0.0687] 0.0806] 0.123
0.45 E 4,036 9.089 | 11,554 |15,367 }16,443 | 19,441 |24,356 27,756
)/ 0.192 0.247 | 0.248 | 0,251 0.275 0.21 0.264 | 0,269
~ 0.0518 | 0.0840] 0.0840| 0,0816 | 0.189 0,0700] 0.0794| 0,112
0. 60 E 4, 811 8.641 |10,334 12,867 |13.573 | 15,563 | 18,243 | 21,158
v’ 0,222 0.262 | 0,262 | 0,264 | 0.282 | 0.236 | 0,275 0.279
A 0.0582 | 0.0816] 0,0816 | 0.0798 | 0.158 0.0714} 0.0782; 0,102
0.75 E 5.709 8.203 9.203 10,666 11,071 |12.232 | 14,165 |15,523
e 0.253 0.276 | 0.276 | 0,276 |0.288 | 0.258 | 0.284 | 0,287
7 0.0645| 0,0791 | 0,0791} 0,0780 | 0,127 0.0727] 0.0770| 0,0920
0.90 E 6.733 7.776 | 8.154 8.699 8. 851 9.291 {10,032 }110.572
v 0.282 | 0.290 0.290 0.289 |0.294 | 0.281 0.292 | 0,293
Vi 0,0708 | 0.0766| 0.0766| 0,0762 §0,0958] 0.0741§ 0.0758] 0,0818
1. 00 E 7.500 7.500 { 7.500 7.500 7.500 7.500 7.500 7.500
» 0. 300 0.300 { 0.300 0.300 0.300 0.300 0.300 | 0,300
A 0.0750 { 0.0750] 0,0750| 0.0750 J0.0750} 0.0750] 0,0750; 0.0750
106 psi ; + #/in3
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Table 7. ELASTIC CONSTANTS OF FIBROUS COMPOSITES

Uniaxial Laminates
"Light Alloy I'' Matrix

» Fiber.‘Material
v Hollow | Solid [Hi Mod, {Asbes- Berly-
o Property; E-glassiE-glassi Glass tos Steel lium Boron |Alumina
0 E* - 10.500 {16,000 {26.500 |30.000 [40.000 {60.000 {75,000
7 - 0. 200 0.200 0. 200 0. 250 0.090 0.200 0. 200
AT - 0.0914 1 0,0914 1 0.0870 ¢ 0, 2830 O.,O()()OJ 0.0830} 0.1430
0.15 El* 5.478 {11,195 [15,871 {24,796 [27.755 |36,344 (53,272 {66,022
EZ* 1.786 11,080 |15,888 {24,301 (26,832 {34,142 {45,942 {53,709
Gi2* 1. 409 4,562 6.523 9,963 (10,669 [14.959 |18.846 |22.039
Y 0. 241 0.218 0,216 0.214 0.257 0.119 0.213 0,212
yd 0.03551 0.0852| 0,0852{ 0.0814 | 0, 248 0.0636} 0.0780; 0,129
0. 30 E, 7.164 11. 882 [15.734 {23,085 {25.509 132,657 146,537 }57.037
E, 2,756 {11.695 115,763 {22,370 (24.174 129,379 [36,833 }41,291
G2 1,922 4,757 6.383 9.015 9.522 }12.405 14,744 16,498
%) 0,263 | 0.235 | 0.232 ] 0.229 | 0,264 | 0.148 } 0.226 | 0.225
ya 0.0380¢ 0.0790{ 0.07901¢{ 0.0759 1 0.213 0.0612 | 0.0731 0.115
0. 45 E; 8.846 (12,561 {15.589 121,367 [23.261 128.939 [39.795 |48.045
E; 4,108 112,340 |[15.623 {20.587 {21.823 25,684 [30.079 32,678
G112 2,514 4,958 6,246 8.174 8.526 }10,4l11 11,813 }12,.798
4 0.276 0. 251 0.247 0.243 0.271 0.179 0.240 0.239
z) 0.04051{ 0.07281¢ 0,0728| 0.,0703} 0.178 0.0588] 0.06811{ 0,101
0. 60 E, 10. 526 {13.234 {15,438 {19.641 {21.011 25,186 |[33.045 139,045
E, 6,029 113,014 |15,469 {18.911 19, 695 (22,247 |25.756 |26, 215
Gz 3,204 5.168 6.112 7.424 7.652 8, 811 9.615 }10.153
v, 1 0,286 0.266 0,262 0.258 0.279 0,211 0. 255 0. 254
Va 0.0432| 0,0666| 0,06661 0.0648 ] 0,143 0.0564f 0.0632} 0,0872
0.75 £ 12,205 |13,901 15,279 |17.907 }18.758 | 21.398 {26,286 {30,037
E2 8.696 13,720 {15,301 |17.339 117.764 |19.211 120,460 }21,194
G2 4,020 5,386 5.981 6.751 6.878 7,499 7,906 8.167
7 0.292 0,279 0.277 0.274 0.286 0,243 0.271 0.270
A 0,0457 /ON.(‘()603 0.0603{ 0.05921{ 0,108 0.0540{ 0.0582} 0.0732
0.90 £y 113.882 {14,562 |15.114 16,166 {16,504 {17,572 | 19,518 } 21,018
E; 12,178 14,469 |[15,123 |15.888 {16,034 |16.560 | 16,973 |17.231
Gy 5,000 5,613 5.853 6.143 6.189 6. 404 6.538 1 6,622
75 0.297 0.292 0.291 0.289 0.294 0,277 0,288 0,288
Y 0.0483} 0,054l | 0,0541} 0,0537{ 0.0733 0.0516] 0.0533} 0.0593
1. 00 E 15,000 |[15.000 {15,000 |15,000 }15,000 {15,000 { 15,000 115,000
7/ 0, 300 0. 300 0,300 0.300 0. 300 0,300 0. 300 0. 300
A 0,0500| 0.0500 ] 0,0500] 0,0500§ 0,0500| 0,0500{ 0.0500] 0,0500
106 psi ; + #/in3
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Table 7A, ELASTIC CONSTANTS OF FIBROUS COMPOSITES
Isotropic Laminates
"Light Alloy I'"' Matrix
Fiber Material
v Hollow| Solid [Hi Mod. |Asbes- Beryl-
b Property|E-glass| E-glass| Glass tos Steel lium Boron [Alumina
0 E* --- 10,500 |16.000 |26.500 |30.000 |40.000 | 60,000 {75,000
;/ ——— 0. 200 0. 200 0,200 0,250 0.090 0.200 0. 200
2t -——— 0.0914{ 0,0914| 0.0870(| 0.2830f 0.0660{ 0.0830{ 0,1430
0.15 E 3.506 | 11,128 15,875 |24.429 [27.115 |34.712 |48.245 {57,625
v 0.153 0.218 0. 216 0.216 0.257 0,218 0.219 0.221
~ 0.0355| 0.0852) 0.0852 | 0,0814] 0,248 0.0636| 0.0780| 0.129
0. 30 E 4, 816 11,772 {15,742 |22,531 |24.555 [30.302 [39.749 |46.121
v 0.175 0.235 0.232 0.232 0.265 0.164 0,237 0.240
2 0.0380f 0.0790] 0.0790| 0.0759] 0,213 0.0612| 0.0731{ 0,115
0.45 E 6.329 |12.430 {15.599 [20.752 [22.220 {26.401 |32.945 |37.325
> 0,198 0. 250 0,248 0.247 0.273 0.195 0.252 0.256
2 0.0405| 0.0728 | 0.0728 0.,0703] 0.178 0.0588] 0.0681 1} 0.101
0. 60 E 8.134 (13,103 |15,446 |19.068 |20.058 1|22.919 {27.191 {30.078
v 0. 225 0.265 0.263 0,262 0.280 0.225 0. 265 0.268
<~ 0,0432 ] 0.0666 { 0,0666{ 0.0648| 0,143 0.0564| 0.0632| 0.0872
0.75 E 10,321 13,795 {15.285 [17.469 |18.045 |19.726 |22.171 |23,845
e 0. 254 0.278 0.277 0.276 0.287 0. 252 0.277 0.279
2 0.0457 { 0.0603 | 0.0603 | 0.0592 0.108 0.0540 ] 0.0582 ! 0.0732
0.90 E 12,952 |14.508 |15.116 15.957 116.172 [16.806 |17.713 |18, 345
5/ 0.282 0.291 0.291 | 0.290 0.294 0.280 0.290 0.290
£ 0.0483 | 0,0541 |0.0541 | 0,0537} 0.0733 | 0,0516 |{ 0.0533 1 0,0593
1. 00 E 15,000 {15,000 J15,000 {15,000 {15,000 15,000 {15,000 15,000
/ 0. 300 0. 300 0.300 0.300 0. 300 0. 300 0. 300 0. 300
) 0.0500 | 0.0500 |0.0500 | 0.0500 | 0.0500 { 0.0500 | 0.0500 | 0.0500
% 106 psi ; +  #/in3
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Table 8. ELASTIC CONSTANTS OF FIBROUS COMPOSITES
Uniaxial Laminates
"Light Alloy II''" Matrix
Fiber Materials
Hollow | Solid |Hi Mod. [Asbes- Beryl-
Vb Property] E-glass|E-glass| Glass tos Steel lium Boron {Alumina
0 E* -—- 10,500 | 16,000 [26.500 }|30,000 |40,000 [60.000 |75.000
)/ - 0,200 0. 200 0.200 0,250 0.090 0.200 0. 200
/0+ --- 0.0914| 0.0914| 0,0870| 0.2830| 0.0660{ 0.0830| 0,1430
0.15 El* 5.478 | 11,195 | 15,871 [24.796 |27.755 (36,344 |53,272 {66,022
E,* 1.786 | 11,080 | 15.888 {24,303 {26,832 (34,142 {45,942 |53.709
Gpo* 1. 409 4,562 6.523 9.963 |10.669 |14.959 {18.846 [22.039
Vs, 0. 241 0.218 0,216 0.214 0. 257 0.119 0.213 0.212
Y 0.0392] 0,0889{ 0,0889} 0.0852] 0,252 0.0673] 0.0818 | 0,133
0. 30 £ 7.164 11,882 | 15.734 23,085 {25.509 {32.657 146.537 |57.037
E> 2,756 | 11.695 | 15.763 [22.370 |24.174 }29.579 {36.833 [41,291
S}}Z 1.922 4.757 6.383 9.015 9.523 |12.405 114,744 |16.498
21 0,263 0.235 0.232 0.229 0.264 0.148 0.226 | 0,225
Vi 0.0455] 0,0865| 0.0865| 0.0834| 0,221 0.0687 | 0.0806} 0.123
0.45 By 8.846 12.561 15,589 |[21.367 {23,261 {28,939 [39.795 {48,045
E, 4,108 |12,340 |15,632 20,587 |21.823 |25.684 [30.079 |32.678
Gi» 2,514 4.958 6,246 8.174 8.526 (10, 411 11, 813 12,798
1{( 0.276 0. 251 0.247 0.243 0.271 0.179 0.240 0.239
o 0.0518 | 0,0840} 0.0840{ 0.0816 | 0,189 0.07001 0.0794 0.112
0. 60 E, 10,526 {13,234 15,438 [19,641 {21,011 {25.186 {33,045 |39.045
E, 6.029 (13,014 {15.469 118,911 |19.695 [22,247 {24.756 26,215
Gy, 3.204 5.168 6,112 7.424 7.652 8. 811 9.615 {10.153
A 0. 286 0.266 0.262 0.258 0.279 0. 211 0. 255 0.254
Ve 0.0582 { 0.0914 { 0.0816 } 0,0798{ 0,158 0.0714 | 0.0782{ 0,102
0.75 Ey 12,205 {13.901 {15,279 |17.907 }{18.758 |21.398 |26.286 {30,037
E, 8,696 {13,720 |[15.301 17.339 }17.764 [19,211 |20.460 |21.194
Gyp 4,020 5.386 5.981 6. 751 6,878 7.499 7.906 8.167
A1 0.292 04279 0.277 0.274 | 0,286 0,243 0.271 0.270
Vi 0.0645 [ 0.0791 | 0,0791 { 0,0780} 0,127 0.0727{ 0,0770 | 0.0920
0.90 E; 13,882 |14.562 (15,114 {16,166 |16.504 {17.572 {19,518 [21.018
E, 12,178 |14.469 {15,123 115,888 }16.034 {16,560 |16,973 |17,231
G2 5,000 5.613 5.853 6.143 6.189 6,404 6538 6,622
) 0. 297 0.292 0.291 0.289 0.294 | 0.277 0.288 0.288
V 0.0708 {0.0766 1] 0,0766{ 0.0762{ 0,0958 | 0.0741{ 0.0758 | 0.0818
1. 00 E 15,000 415,000 (15,000 {15.000 |15.000 }15,000 {15.000 |15.000
v 0.300 {0,300 0. 300 0. 300 0. 300 0. 300 0. 300 0.300
9 0.0750 [0.0750 | 0.07501{ 0.0750 | 0.0750 | 0.0750{ 0.0750 | 0.0750
¥ 100psi ;  +  #/in3
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Table 8A.

ELASTIC CONSTANTS OF FIBROUS COMPOSITES

Isotropic Laminates
"Light Alloy II'" Matrix

Fiber Material
v Hollow | Solid |Hi Mod. |Asbes- Beryl-
Property] E-glass|E-glass|Glass tos Steel lium Boron |Alumina
0 E* -—- 10.500 | 16.000 }26.500 |30,000 { 40,000 |60.000 ]75.000
/+ --- 0.200 0.200 { 0.200 0.250 0.090 0.200 0.200
4 - 0.0914¢ 0,0914§ 00,0870 0.2830} 0.0660} 0.0830| 0.1430
0.15 E 3.506 ] 11,128 {15,875 |24,429 [27.115 | 34,712 |48.245 |57.625
-,/ 0.153 0.218 0,216 0.216 0.257 0.128 0.219 0. 221
A 0.03924 0.0889| 0.0889} 0,0852} 0.252 { 0,0673| 0.0818} 0.133
0.30 E 4,816 {11,772 | 15,742 (22,531 }24.555 | 30,302 |39.749 {46.121
v 0.175 0.235 | 0,232 | 0,232 | 0.265 0.164 0.237 0.240
~ 0.04551 0.0865] 0,0865] 0,0834} 0.221 0.06871 0.0806] 0.123
0.45 E 6.329 {12.430 {15,599 |26,752 [22.220 }26.421 [32.945 {37.325
-~ 0.198 0.250 0.248 | 0,247 0.273 0.195 0.252 | 0.256
b 0.0518 | 0.0840{ 0,0840{ 0,0816 { 0.189 0.0700{ 0.0794] 0.112
0. 60 E 8.134 113,103 {15,446 {19,068 {20,058 }22.919 {27.191 30.078
7 0.225 } 0,265 0.263 | 0,262 | 0,280 0..225 0.265 0,268
A 0.0582] 0,0914| 0,0816 § 0,798 0.158 0.0714 | 0,0782| 0.102
0.75 E 10.321 13,795 {15,285 |{17.469 {[18.045 |19.726 [22,171 {23,845
v 0.254 | 0,278 0,277 0,276 | 0.287 | 0.252 | 0,277 0.279
~ 0.0645} 0,0791] 0,0791§ 0.0780} 0.127 0.07271C,0770§ 0.0920
0.90 E 12,952 114,508 {15,116 {15,957 |16.172 |16.806 |17.713 |18, 345
e 0.282 | 0,29 0.291 0.290 0.294 | 0.280 0.290 0.290
A 0.0708] 0,0766]1 0,07664f 0,0762} 0.0958[ 0.0741 { 0.0758] 0,0818
1, 00 E 15,000 {15.000 {15,000 {15,000 [15,000 |15.000 15,000 {15.000
" 0. 300 0. 300 0.300 0. 300 0. 300 0.300 |0.300 | 0,300
A 0.0750{ 0.0750| 0,0750] 0,0750} 0,0750] 0.0750 | 0,0750{ 0.0750
% 100psi 5 +  #/in3
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Table 9A. ELASTIC CONSTANTS OF FIBROUS COMPOSITES
Isotropic Laminates
"Light Alloy III'"' Matrix
Fiber Material
Hollow | Solid (Hi Mod. | Asbes - Beryl-
Vb Property|E-glass{E-glass| Glass tos Steel lium | Boron {Alumina
0 E* --- }10.500 | 16,000 [26.500 {30.000 }40.000 {60,000 {75.000
7/+ - 0. 200 0. 200 0.200 0. 250 0.090 0. 200 0.200-
/ - 0.0914{ 0.0914| 0,0870| 0,2830] 0.0660| 0.0830| 0.1430
0.15 E 4,824 112,816 | 17.808 |27.053 {30,014 {38,616 {54,292 [65,537
v 0,163 0.223 0,220 0. 217 0.258 0.126 0.216 0. 217
ra 0.0392} 0.0889; 0.0889| 0,0852 | 0,251 0.0673| 0.0818 | 0.132
0. 30 E 7.580 15,332 | 19,709 |27.595 {30,022 {37.193 |49.210 [57.580
/ 0.180 0,242 0.237 0.233 0,267 0.160 0.232 0,233
Vi 0.0455{ 0.0865| 0.0865| 0,0834 | 0,221 0,0687| 0.0806] 0,123
0. 45 E 10,758 }17.987 | 21.700 [28,126 |30.026 |[35.717 |[44.548 |50.575
v 0.198 0.258 0,253 0.249 0.273 0.193 0,247 0,248
Vi 0.0518 | 0,0840! 0,0840| 0,0816 | 0.189 0.0700] 0.0794 | 0,112
0. 60 E 14,585 120,856 | 23,785 [28,648 130.025 |34,191 {40.210 |44.261
7/ 0,222 0.270 0.267 0.263 0,281 0.224 0,262 0,262
Vi 0.0582¢ 0.0816] 0.0816] 00,0798 0.158 0.0714§ 0.07821{ 0.102
0.75 E 19,436 |[23,961 |25.982 [29,161 {30,019 {32,627 {36.115 {38.508
N 0. 251 0. 281 0,279 0,278 0.288 0,253 0,276 0.276
/ﬂ 0.0645{ 0.0791| 0.0791| 0,0780 | 0.127 0.0727) 0.0770 | 0.0920
0. 90 E 25,273 (27.407 [28.325 {29,667 {30.009 }31.048 {32,371 {33,249
7/ 0.282 0.291 0.292 0.291 0.295 0.282 0.290 0.290
2 0.07081{ 0.0766} 0.0766| 0,0762} 0.0958] 0,0741| 0.0758 | 0.0818
1. 00 E 30,000 {30,000 |30,000 }30.000 {30.000 [30.000 |30,000 {30,000
" 0. 300 0. 300 0, 300 0. 300 0. 300 0. 300 0. 300 0. 300
¥ 0.0750{ 0.0750} 0.0750} 0,0750| 0,0750{ 0,0750| 0.0750 | 0,0750
* 106 psi ; + #/in3
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Table 10. ELASTIC CONSTANTS OF FIBROUS COMPOSITES
Uniaxial L.aminates
Titanium Matrix
Fiber Materials
v Hollow | Solid Hi Mod. jAsbes- Beryl-
b [Propertyl E-glass|E-glass| Glass tos Steel lium Boron | Aluminal

0 E* —— 10.500 | 16,000 {26.500 |30.000 {40,000 |60.000 {75,000
v/ ——- | 0.200 | 0.200 | 0.200 | 0.250 | 0.090 | 0.200 | 0.200
ot --- 0.0914! 0,0914{ 0.0870] 0.2830] 0.0660}] 0,0830} 0.1430

0.15 El* 5.478 | 11.195 | 15,871 |24.796 27‘.755 36,344 [53,272 | 66,022
EZ" 1,786 | 11.080 | 15.888 |24.303 |26.382 {34,142 [45.942 [53.709

(:)“3/1;"‘ 1,409 4,562 6.523 | 9.963 |10,669 {14,959 | 18,846 |22.039

Y 0. 241 0. 218 0. 216 0,214 0.257 0.119 0.213 0. 212

/ 0.0505| 0.100 0,100 0.0964] 0,263 0.0786| 0.0931{ 0,144

0. 30 Ey 7.164 11, 882 | 15.734 123,085 [25.509 {32.657 |46.537 |57.037
E, 2.756 | 11,695 | 15.763 {22.370 {24.174 }29.579 |[36.833 | 41.291

G 1.922 4,757 6.383 1 9.015 9,523 |12,405 | 14.744 | 16,498

1%,2 0.263 0.235 0.232 | 0.229 0.264 0.148 0.226 0,225

V4 0.0680f 0.109 0.109 0.106 0.243 0.0911} 0.103 0.143

0. 45 Ey 8.846 {12,561 15.589 | 21.367 |23.261 128.939 |39,795 | 48.045
E, 4,108 | 12.340 {15.623 |20.587 {21.823 {25,684 |30.079 | 32,678

Gyp 2.514 4,958 6,246 | 8,174 8.526 {10,411 11,813 | 12,798

«;4'/ 0.276 0. 251 0.247 | 0.243 0.271 0.179 0.240 0.239

P 0.0856{ 0.118 0,118 0.115 0,223 0.102 0.113 0.146

0. 60 E 10.526 | 13,234 {15,438 {19,641 | 21,011 25,186 133,045 | 39,045
E, 6.029 13,014 | 15, 469 {18.911 19. 695 | 22,247 |24.756 | 26.215

Gy2 3.204 5.168 6,112 7.424 7.652 8. 811 9, 615 | 10.153

7@ 0,286 0.266 0.262 | 0,258 0.279 0.211 0. 255 0. 254

0 0.103 0.127 0.127 0.125 0.203 0.116 0.123 0.147

0.75 E, 12,205 | 13,901 {15.279 {17.907 ;18,758 21.398 | 26,286 | 30,037
E2 8.696 ] 13.720 | 15.301 117.339 }17.764 } 19,211 |20.460 { 21,194

G2 4,020 5.386 5.981 6.751 6.878 7.499 7.906 8.167

;’é 0.292 0.279 0.277 1 0,274 0.286 0,243 0.271 0,270

A 0,121 0.135 0.135 0.134 0.183 0.129 0.133 0.148

0.90 B, 13,882 | 14,562 | 15,114 16,166 |16.504 | 17.572 | 19.518 21,018
E, 12.178 | 14.569 | 15,123 115,888 |16.034 | 16,560 | 16,973 | 17.231

GlZ 5,000 5.613 5.853 6.143 6.189 6. 404 6.538 6,622

/) 0.297 0.292 0. 291 0.289 0.294 0.277 0.288 0.288

i 0.138 0,144 0,144 0.144 0.163 0,142 0.143 0.149

1. 00 E 15,000 | 15,000 | 15.000 |15,000 | 15,000 15,000 | 15,000 | 15,000
v 0. 300 0.300 0.300 | 0.300 0. 300 0. 300 0.300 0. 300

R 0.150 0.150 0,150 0.150 0.150 0.150 0.150 0.150

100 psi ;  +  #/in3




Table 10A,

Isotropic Laminates
Titanium Matrix

ELASTIC CONSTANTS OF FIBROUS COMPOSITES

Fiber Material
v Hollow | Solid [Hi Mod.|Asbes - Beryl-
b Property| E-glass| E-glass| Glass tos Steel lium Boron |Alumina
0 E* - 10.500 116.000 |26.500 {30,000 [40.000 [60.000 |75,000
v --- 0.200 0.200 0.200 | 0,250 0.090 0.200 0, 200
Vil --- 0.0914 } 0.0914 | 0.0870} 0,2830} 0,0660| 0.0830] 0,1430
0.15 E 3,506 | 11.128 }15.875 (24,429 {27.115 (34,712 |48.245 [57.625
v 0.153 0. 218 0.216 0.216 0.257 0.128 0.219 0. 221
P 0.0505} 0.100 0.100 0.0964] 0,263 | 0.0786| 0.0931{ 0,144
0.30 E 4.816 11,772 {15,742 |22.531 {24,555 {30.302 |39.749 |46,121
v 0.175 0.235 0.232 | 0,232 § 0.265 0.164 0.237 0. 240
2 0.0680| 0.109 0.109 0.106 0,243 0.0911 | 0,103 0.143
0. 45 E 6.329 112,430 {15.599 |20.752 {22,220 26,421 {32.945 {37.235
+ 0.198 0.250 0.248 0.247 § 0.273 0.195 0.252 } 0.256
4 0.08564 0,118 0.118 0.115 0.223 | 0,102 0.113 0.146
0. 60 E 8.134 {13,013 |15.446 |{19.068 {20,058 [22,919 {27.191 {30.078
v’ 0.225 0.265 0.263 0.262 1§ 0.280 0.225 0.265 0.268
2 0.103 0,127 0.127 0.125 10,203 | 0,116 0.123 0.147
0.75 E 10.321 113,795 15,285 |17.469 |18.045 {19,746 {22.171 }23,845
v 0.254 | 0,278 |0.277 | 0.276 | 0.287 0,252 0.277 0.279
Y 0,121 0.135 0.135 0.134 0.183 0.129 0.133 0.148
0.90 E 12,952 14,508 |15, 116 [15.957 ]16.172 {16,806 {17.713 {18,345
7 0.282 0.291 0.291 0.29C {0,294 | 0.280 0.290 0.290
2 0.138 0.144 0.144 0.144 0,163 0.142 0.143 0.149
1,00 E 15,000 |15,000 {15.000 {15.000 {15,000 {15,000 {15.000 |15,000
" 0. 300 0.300 }0.,300 0. 300 0.300 0. 300 0.300 | 0.300
A 0.150 0.150 0.150 0.150 0.150 0.150 0.150 0.150
* 10%psi; + #/in3
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Table 11. ELASTIC CONSTANTS OF FIBROUS COMPOSITES
Uniaxial Laminates
Steel Matrix
Fiber Materials
Hollow { Solid {Hi Mod. |Asbes- Beryl-
Vb Property E-glass|{E-glass| Glass tos Steel lium jBoron [|Alumina
0 E* - 10,500 | 16,000 }26,500 }30.000 {40,000 |60,000 |75,000
Vv - 0. 200 0. 200 0. 200 0,250 0.090 0.200 0,200
o --- 0.09144 0.0914} 0.0870] 0,2830) 0.0660{ 0,0830| 0,1430
0.15 E* 7.735 113,462 | 18,139 |27.066 |30.010 [38,683 155,543 [68,293
Ez* 2,353 |12.423 | 17,593 {27.041 {30,018 |38.724 ;53,815 {64,374
Gpp* 1, 883 5.152 7.262 111,115 11,930 [17.082 {22,060 |27.390
7, 0,273 0.225 0.220 0.217 0.258 0.124 0. 214 C. 213
e 0.0729} 0.123 0.123 0.119 0.286 0. 101 0,116 | 0,167 _
0. 30 E; 11. 670 16,405 20,261 {27,616 {30.017 }37.298 ;51,071 | 61,572
E, 4,086 14,684 119,365 27.575 {30,029 137.389 [48.586 {56,054
Gy2 2,953 6,009 7.898 {11,118 11.860 15,918 119,558 |22.522
2 0.276 0, 244 0.238 | 0,233 0.266 0.157 0.228 0,227
A 0,113 0,154 0,154 1 0,151 0,288 } 0,136 0,148 0.190
0.45 E; 15,601 {19,334 |22.368 {28.151 [30.020 |35.847 }46.585 54,837
E; 6.568 17,235 | 21,293 28,103 130,034 {35,944 343,904 [49,01l%
Gi2 4,209 6.959 8,578 111,263 [11.790 i14.845 117,403 | 19,370
vy, 0.285 | 0.260 | 0,254 | 0,249 §{ 0,273 | 0.189 0.243 | 0,242
A 0.153 0.185 0.185 0.183 0,291 0.171 0,181 0.214
0. 60 Ey 19.529 22,262 {24,262 28,672 {30,019 §34,332 [42.084 }48,056
E> 10,286 20,070 {23,371 {28,626 |30.033 {34,339 §39,614 42,863
Gi2 5.702 8.017 9.307 11,337 {11.701 {13,853 {15,527 } 16,751
»ﬂ,/, 0.292 0,273 0. 269 0.264 0. 281 0.220 0.257 0,257
O 0.193 0. 217 0. 217 0,215 0.293 0,206 0.213 0,237 |
0.75 E; 23,456 25,123 [26.546 [29.180 {30,015 |32.757 [37.566 | 41, 318
E, 15.829 123,243 {25,623 §29.144 }30.025 [32.754 35,682 {37,455
?/],2 7.508 9.204 | 10,091 11, 412 11, 652 12,932 13,880 | 14,542
Y 0.296 0. 285 0. 281 0.278 0.288 0,251 0,273 0.272
A 0,233 0,249 0. 248 0,248 0.296 0.242 0.246 0, 261
0.90 Eq 27,383 128.067 (28,621 [29.676 [30,007 {31,122 }33.032 |34.534
E, 23,538 126,971 28,124 29,658 {30,012 {31.092 §32.133 |32,752
G2 0.738 }10.544 |10,937 }11,488 [11.584 |12.077 }12.421 | 12,653
v, 0.298 0,294 0.293 0.291 0.295 0. 280 0.289 0.289
,2" 0,273 0.279 0.279 0,279 0,298 0,277 0.278 0.284
1. 00 E 30.000 (30,000 30,000 {30,000 {30.000 |{30.000 [30.000 {30,000
e 0. 300 0. 300 0. 300 0. 300 0. 300 0. 300 0. 300 0. 300
s 0.3000}] 0.3000] 0.30001§ 0.3000] 0,3000{ 0.3000] 0.3000| 0.3000
106 psi ; +  #/in3
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Table 11A, ELASTIC CONSTANTS OF FIBROUS COMPOSITES
Isotropic Laminates
Steel Matrix
Fiber Materials
v Hollow | Solid |Hi Mod. |Asbes- Beryl-
b Property] E-glass| E-glass|{ Glass tos Steel lium Boron {Alumina
0 E* - 10,500 | 16,000 | 26,500 [30.000 |40.000 |60,000 {75,000
v - 0,200 0,200 0.200 0.250 0.090 0.200 0. 200
P - 0.0914f 0.0914| 0,0870} 0,2830| 0,0660| 0.0830f 0.1430
0.15 E 4,824 | 12,816 | 17.808 | 27.053 |30.014 {38,161 {54,292 {65,537
v 0.163 0,223 0,220 0.217 0.278 0.126 0. 216 0.217
2 0.0729] 0.123 0.123 0.119 0.286 0.101 0.116 0.167
0. 30 E 7.580 15,312 | 19,709 }27.595 |30.022 37.‘193 49,210 }57.580
¥ 0.180 0.242 0.237 0.233 0.266 | 0.160 0.232 0.233
N 0.113 0,154 0.154 0,151 0.288 0.136 0.148 0.190
0.45 E 10,758 1 17.987 | 21,700 |28.126 [30.026 {35,717 |44.548 |50.575
v 0.198 0. 258 0.253 0.249 0.273 0,193 0.247 0.248
7 0.153 0.185 0.185 0.183 0.291 0.171 0.181 0. 214
0. 60 E i4.585 |20,856 | 23,785 {28,648 30,025 [34,191 {40,210 |44,061
v 0.222 0.270 0,267 0.263 0.281 0.224 0.262 0.262
Va 0.193 0. 217 0.217 0. 215 0.293 0.206 0,213 0,237
0.75 E 19,346 ;23,961 {25.982 |29.161 |30,019 ]32,627 [36.155 [38,508
I 0.251 0.281 0.279 0.278 0.288 0.253 0.276 0.276
V4 0.233 0. 249 0,248 0.248 0.296 0.242 0,246 0.261
0.90 E 25,273 127.407 |28.325 |29.667 {30,009 |31.048 |32,371 33,249
7" G.282 0.291 0,292 0.291 0.295 0.282 0.290 0.290
Y4 0,273 0.279 0.279 0.279 0.298 0.277 0,278 0,284
1. 00 E 30.000 |30,000 } 30,000 |30.000 {30,000 |30.000 {30.000 |30.000
e 0. 300 0.300 0.300 0.300 0. 300 0. 300 0. 300 0. 300
Y 0.3000| 0.3000{ 0,3000{ 0,3000] 0,3000{ 0.2000| 0,3000} 0.3000
106 psi ; 4+ #/in3
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Table 12, ELASTIC CONSTANTS OF FIBROUS COMPOSITES
Uniaxial Laminates
Boron Matrix
Fiber Material
Hollow | Solid [Hi Mod.| Asbes- Beryl-
Vb Property| E-glass{E-glass| Glass tos Steel lium Boron {Alumina
0 E* ---  {10.500 |16,000 } 26,500 {30,000 [40,000 {60,000 |75,000
r --- 0. 200 0,200 0.200 | 0,250 0.090 0. 200 0. 200
At = 0.0914} 0,09141 0,0870] 0.2830] 0.0660] 0.0830{ 0.1430
0.15 El* 12,242 [17.990 (22,671 31,602 34,520 {43,347 |60.083 |72.834
Ep” 3.387 |14,713 (20,050 }30,053 {33,326 [42,826 {60,141 }72,737
C’lZ* 2.822 6.152 8.342 | 12,431 {13,310 |18.995 {24,701 |29,844
¥, 0.271 0.234 | 0,228 0,222 } 0,260 0.133 0. 216 0.215
ya 0.0392} 0,0889} 0,0889} 0.0852f 0,252 0.0673{ 0,0818 | 0,133
0. 30 E; 20, 675 [25.437 129,302 | 36,667 |39.031 [46,538 [60.134 [70.637
E, 6.577 119,939 {24,933 | 34,116 }37,078 |45, 686 |[60.230 [70.515
G2 4,996 8.174 }10. 218 13,937 {14,721 |19.662 {24,406 |28.509
¥ 0,285 0.256 0.249 0.241 0.269 0.171 0.232 0.230
A 0.0455} 0,.0865( 0.0865| 0,0834f 0,221 0.0687| 0.0806] 0.123
0,45 E; 29.103 32,861 35,906 | 41.703 {43.535 [49.598 160,155 |68, 411
E; 11,254 126,060 [30.542 |38.619 41,186 [48.592 {60,268 [68,279
Gyp 7.569 110.497 [12.332 }15.578 |16,247 120,351 |24.115 |27.240
v, 0,292 0.271 0,264 0,257 | 0,277 0.204 0.248 0,246
ya 0.0518 | 0.0840] 0,0840! 0,0816{ 0.275 0,07004 0,0794 0,112
0. 60 Eq 37.530 140,272 {42.492 146.716 48,032 |52,459 [60.015 [66,155
E, 18.497 132.028 136,851 [43,546 {45,628 {51,560 [60.255 |66,014
Gyo {10,660 }13.193 114,733 {17.370 [17.901 [21.062 [23.827 {26,032
A 0.295 0,282 0,277 0.271 0.284 0.234 0.262 0.261
A 0.0582} 0,0816{ 0.08l6 | 0.0798] 0,158 0.,0714 | 0.0782} 0,102
0.75 Eq 45,957 47.675 149,065 | 51,710 [52.524 {55.407 [60.114 |63.871
E, 29,783 |41.014 144,004 [48,978 {50,458 {54,613 [60.194 63,735
Gy, |14.446 [16.360 |17,482 119.337 [19,700 |21.796 |23,543 {24,881
ai 0.298 0.290 0.287 0.283 | 0.290 0.261 0.277 0.276
A 0.06451 0,0791 | 0.0791 | 0.0780{ 0.127 0.0727] 0.0770| 0.0920
0. 90 B 54, 383 {55,071 {55,629 }56,688 57,011 [58.186 {60.054 | 61.558
E, 46,081 ]50.577 |52.645 [55.175 |55.871 [57.788 [60,090 | 61,473
S}Z 19.188 |20.133 [20.664 | 21.504 |21.664 |22.556 |23.,262 {23.782
i 0.299 0.296 0.295 0.294 | 0,296 0,285 0,291 0.290
pe 0.0708] 0.07661 0,0766! 0,0762| 0,0762]| 0,0741 | 0,0758| 0,0818
1. 00 E 60,000 }60,000 [60,000 |60,000 {60,000 {60,000 {60,000 {60.000
~ 0. 300 0. 300 0.300 0.300 | 0.300 0. 300 0. 300 0. 300
VZ 0.0750f 0.0750| 0.0750{ 0,0750| 0.0750) 0.0750} 0.0750] 0.0750
% 10° psi; +  #/in



ELASTIC CONSTANTS OF FIBROUS COMPOSITES

Table 12A,
Isotropic Laminates
Boron Matrix
Fiber Material
Vb Hollow Solid |Hi Mod.|Asbes~ Beryl-
Property|E-glass |E-glass| Glass tos Steel lium Boron [Alumina
0 E=x - 10.500 | 16.000 | 26.500 ]30.000 | 40,000 {60,000 |75.000
v’ - 0.200 0,200 0.200 0. 250 0.090 0.200 0. 200
ot - 0.0914| 0.0914] 0,0870{ 0,2830{ 0.0660| 0.0830] 0.1430
0.15 E 7.411 {15,909 | 21.024 | 30,650 |33.764 |43.064 |60.107 |72.710
v 0,168 0.233 ] 0.226 | 0.221 0.259 0.132 0.217 | 0.216
Ve 0.0392! 0,0889{ 0.0889{ 0,0852| 0.252 | 0,0673} 0,0818| 0.133
0. 30 E 13,028 | 21.866 |26.497 {35,069 [37.770 |46.070 |60.175 |70.447
> 0,181 0.254 | 0.246 | 0.239 | 0.267 | 0.170 0.233 0.232
2 0.0455] 0.0865| 0.0865| 0.0834{ 0.221 0.0687| 0,0806| 0,123
0.45 E 19.502 |28.388 {32,424 }39.752 |42.003 [49,042 {60,203 |68.193
¥ 0.196 0.268 | 0,261 0.255 0.275 0.203 | 0,248 | 0.247
2 0.0518| 0.0850| 0,0840| 0.0816{ 0.189 0.0700] 0.0794| 0.112
0. 60 E 27.342 135,529 138,844 |44.716 [46.471 52,002 |60.193 |65.940
¥ 0.218 0.277 0.273 | 0,268 | 0.282 | 0.233 | 0,263 | 0,262
ya 0.0582| 0.0816} 0.0816| 0.0798| 0.158 0.0714{ 0.0782} 0.102
0.75 E 37,251 | 43.443 145,874 [50.017 | 51,209 |54.969 {60.147 |63.693
e 0.249 0.283 | 0.282 | 0.280 0.289 | 0.259 0.277 | 0.277
A 0.0645] 0.0791| 0.0791}{ 0,0780] 0.127 0.0727] 0.0770} 0.0920
0.90 E 49.828 {52,615 {53,834 |55.781 [56.311 {57,968 [60.069 | 61.565
/ 0.281 0. 291 0,291 0.292 | 0.295 | 0.284 { 0,291 0.291
A 0.0708}) 0.0766| 0.07661 0.0762| 0,0958| 0.0741! 0.0758] 0.0818
1. 00 E 60,000 | 60.000 |60,000 {60,000 |60.000 |60,000 |60.000 |60.000
" 0. 300 0. 300 0.200 [ 0.300 | 0,300 | 0.300 | 0.300 0. 300
2 0.0750f 0.0750} 0.0750; 0,0750{ 0.0750} 0.0750] 0.0750| 0.0750
106 psi ; +  #/in3
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Figure 1. Bounds on the Effective Trasnverse Youngs Modulus for Solid
and Hollow Glass Fibers in an Epoxy Matrix, (Parallel fibers,
random array)
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Figure 6. Fiber Reinforced Composite - Tensile Failure Model.
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for Statistical Failure Model and for "Rule of Mixtures Model.
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Strength Upon the Ratio of Composite Tensile Strength (the
statistical mode) to Mean Fiber Strength.
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Figure 9. Experimental Tensile Failure Specimen.
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b. Matrix Modulus = 0.28 x 102 psi

Figure 12. Typical View of Tensile Failure Specimen of 99% of Ultimate
Strength. Fibers are 0.0035" Diameter E-glass.
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Figure 14. Rectangular Strength Distribution Function for the Links of a Chain.
a. Link Distribution Function

Link Cumulative Distribution Function

Chain or Fiber Distribution Function

Chain or Fiber Cumulative Distribution Function.
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Figure 15. Double Rectangular Strength Distribution Function for the
Links of a Chain
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Figure 16. Number of Links in the Chain to Equate the Peaks of the
Distribution Function Shown in Figure 15,
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156

Photoelastic Stress Pattern for Three Individual E-Glass Fibers Imbeddedin an Epoxy Matrix
Showing Small Wavelength Buckle Patterns.

Figure 18,
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Figure 19. Experimental Results for Fiber Buckling Wavelength as a
Function of Fiber Diameter.

157




X

P 4
- I A vV v v ¥
‘\ /) l\/x _’l‘—h {\\ (\\ {\
I . I
h 1 / / /
L !/ } // ‘Z_S’I y ; * '/' ’/,'
bl ) s
A 4 L \ 4 1 A
d 4 4 4 A d 4 4 4

"EXTENSION" MODE "SHEAR" MODE

AVi+ AVy - AT =0

P=O'fh

LRSS
L

V = 2 sin
n On

Figure 20. Analytical Model for Compressive Strength of Fibrous Composite,
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Figure 21. Compressive Strength of Glass Reinforced Epoxy Composites.
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Figure 22, Critical Compressive Strain for Fibrous Composites.
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Figure 23, Comparison of Theory and Experiment for Compressive
Strength to Density Ratio of Hollow Glass Fiber Composites.
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Figure 25. Reference Weight-Efficiencies (weight per unit surface area per

unit shell radius) of Idealized, Metal Monocoque Cylindrical
Shells for Various Intensities of Axial Compression Loading, and
Definition of Loading Range of Interest for Boost Vehicles.
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1654



1 0 100 100 10,000 100,000

1000 T T
|
|
\
|
|
|
|
|
1 1001
|
|
{ ,
| V7
‘ “ 7
L~ 1 /
1 LA / 4 LL, /4
! 10.0~ M Y L / 72 g b // :_:f
| 7 y PLid
y
| 2 2
] /
1
‘ s
| 4 v /‘4 o
| v / I
| f V4 /
‘ /
‘ /
‘ 2le
| 7 &
| / z|e
/|
pal
y —.001
—.0301
e
(D001)
kg
Per —3
c m3
{pci}
-—.00001
oo1 | | ! | |
: t 10 100 1ICO0 10,000 100,000
1 [{e] 100 1000 10,000 100,000
| 10 100 1000 10,000
R m2

Figure 27. Reference Weight-Efficiencies of Idealized, Metal-Faced
Sandwich, Cylindrical Shells for Various Intensities of Axial
Loading and Various Densities of Hypothetical, Ideal Core
Material.

165

|
‘ p

|

| i 10 100 1000
Ny KN




| 10 100 1000
1000 I T T I T f
1
100k
/
/
P 7T
el /s
10 -] 4
TITANIUM s
H /
i1 ;/
VV ]
- / P
> e BERYLLIUM — ol
41 / " T
I~ L 5 P o e
g[m / "
© Ll v T @l
& - ;’m
// r
277 // g Y
(on ~~ /// r —.001
~% - g
e e
Al - L~
/ el £
27.7 P 277 ~T —
(.00 T /// r T
/ - r
- S o=
- e
277 /27_7 //
(0001) s — 000!
oo, ~8 e
< "m3 _
Ol— (pci) pe
<277
— 00001
00 L ! ! L 1
i 10 100 1030 15,000
I 10 100 1000 10,000
Ny kN
R me
Figure 28. Reference Weight-Efficiencies for Best Metals for Idealized

166

Sandwich Construction of Shells Loaded in Axial Compression
in the Range of Interest for Boost-Vehicle Construction.
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Figure 29. Shell Weight-Efficiencies of Steel Fibers in 30 Volume Per-
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Figure 30. Shell Weight-Efficiencies of Solid and Hollow E-Glass Fibers
in 30 Volume Percent Epoxy Binder, and Comparison with
Metal Efficiencies.
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Figure 32, Shell Weight-Efficiencies of Boron and Alumina Fibers in
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Figure 40. Test Set-Up for Ring Tests
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